Zhang Shuai, Tang Tianyi, Peng Xin, Zhang Yanqiu, Yang Wen, Li Wenfei, Xin Xiaoyan, Zhang Jian, Wang Wei, Zhang Bing
School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
Department of Radiology, Drum Tower Hospital, Nanjing University, Nanjing, China.
Curr Med Imaging. 2022;18(13):1416-1425. doi: 10.2174/1573405618666220518110113.
There are numerous difficulties in using deep learning to automatically locate and identify diseases in chest X-rays (CXR). The most prevailing two are the lack of labeled data of disease locations and poor model transferability between different datasets. This study aims to tackle these problems.
We built a new form of bounding box dataset and developed a two-stage model for disease localization and identification of CXRs based on deep learning. The dataset marks anomalous regions in CXRs but not the corresponding diseases, different from all previous datasets. The advantages of this design are reduced labor of annotation and fewer possible errors associated with image labeling. The two-stage model combines the robustness of the region proposal network, feature pyramid network, and multi-instance learning techniques. We trained and validated our model with the new bounding box dataset and the CheXpert dataset. Then, we tested its classification and localization performance on an external dataset, which is the official split test set of ChestX-ray14.
For classification result, the mean area under the receiver operating characteristic curve (AUC) metrics of our model on the CheXpert validation dataset was 0.912, which was 0.021, superior to the baseline model. The mean AUC of our model on an external testing set was 0.784, whereas the state-of-the-art model got 0.773. The localization results showed comparable performance to the stateof- the-art models.
Our model exhibits a good transferability between datasets. The new bounding box dataset is proven to be useful and shows an alternative technique for compiling disease localization datasets.
使用深度学习自动定位和识别胸部X光(CXR)中的疾病存在诸多困难。最主要的两个困难是缺乏疾病位置的标注数据以及不同数据集之间模型的可转移性较差。本研究旨在解决这些问题。
我们构建了一种新形式的边界框数据集,并基于深度学习开发了一个用于CXR疾病定位和识别的两阶段模型。该数据集标记CXR中的异常区域,但不标记相应疾病,这与之前所有的数据集都不同。这种设计的优点是减少了标注工作量以及与图像标注相关的可能错误。两阶段模型结合了区域提议网络、特征金字塔网络和多实例学习技术的鲁棒性。我们使用新的边界框数据集和CheXpert数据集对模型进行训练和验证。然后,我们在一个外部数据集(即ChestX-ray14的官方分割测试集)上测试其分类和定位性能。
对于分类结果,我们的模型在CheXpert验证数据集上的平均受试者工作特征曲线(AUC)指标为0.912,比基线模型高0.021。我们的模型在外部测试集上的平均AUC为0.784,而最先进的模型为0.773。定位结果显示与最先进的模型具有可比的性能。
我们的模型在数据集之间表现出良好的可转移性。新的边界框数据集被证明是有用的,并展示了一种用于编制疾病定位数据集的替代技术。