文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习方法在前后位和后前位胸部 X 线片中的自动分类。

Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Radiology Artificial Intelligence Lab (RAIL), Malone Center for Engineering in Healthcare, Johns Hopkins University Whiting School of engineering, Baltimore, MD, USA.

出版信息

J Digit Imaging. 2019 Dec;32(6):925-930. doi: 10.1007/s10278-019-00208-0.


DOI:10.1007/s10278-019-00208-0
PMID:30972585
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6841900/
Abstract

Ensuring correct radiograph view labeling is important for machine learning algorithm development and quality control of studies obtained from multiple facilities. The purpose of this study was to develop and test the performance of a deep convolutional neural network (DCNN) for the automated classification of frontal chest radiographs (CXRs) into anteroposterior (AP) or posteroanterior (PA) views. We obtained 112,120 CXRs from the NIH ChestX-ray14 database, a publicly available CXR database performed in adult (106,179 (95%)) and pediatric (5941 (5%)) patients consisting of 44,810 (40%) AP and 67,310 (60%) PA views. CXRs were used to train, validate, and test the ResNet-18 DCNN for classification of radiographs into anteroposterior and posteroanterior views. A second DCNN was developed in the same manner using only the pediatric CXRs (2885 (49%) AP and 3056 (51%) PA). Receiver operating characteristic (ROC) curves with area under the curve (AUC) and standard diagnostic measures were used to evaluate the DCNN's performance on the test dataset. The DCNNs trained on the entire CXR dataset and pediatric CXR dataset had AUCs of 1.0 and 0.997, respectively, and accuracy of 99.6% and 98%, respectively, for distinguishing between AP and PA CXR. Sensitivity and specificity were 99.6% and 99.5%, respectively, for the DCNN trained on the entire dataset and 98% for both sensitivity and specificity for the DCNN trained on the pediatric dataset. The observed difference in performance between the two algorithms was not statistically significant (p = 0.17). Our DCNNs have high accuracy for classifying AP/PA orientation of frontal CXRs, with only slight reduction in performance when the training dataset was reduced by 95%. Rapid classification of CXRs by the DCNN can facilitate annotation of large image datasets for machine learning and quality assurance purposes.

摘要

确保正确标注射线照片视图对于机器学习算法的开发以及来自多个机构的研究的质量控制非常重要。本研究的目的是开发和测试一种用于自动对前后位(AP)或后前位(PA)胸部射线照片(CXR)进行分类的深度卷积神经网络(DCNN)的性能。我们从 NIH ChestX-ray14 数据库中获得了 112120 张 CXR,这是一个公开的 CXR 数据库,在成人(106179 张(95%))和儿科(5941 张(5%))患者中进行,包括 44810 张(40%)AP 和 67310 张(60%)PA 视图。使用 CXR 来训练、验证和测试用于将射线照片分类为前后位的 ResNet-18 DCNN。以相同的方式使用仅儿科 CXR(2885 张(49%)AP 和 3056 张(51%)PA)开发了第二个 DCNN。使用接收器工作特征(ROC)曲线和曲线下面积(AUC)以及标准诊断措施来评估 DCNN 在测试数据集上的性能。在整个 CXR 数据集和儿科 CXR 数据集上训练的 DCNN 的 AUC 分别为 1.0 和 0.997,准确性分别为 99.6%和 98%,用于区分 AP 和 PA CXR。对于在整个数据集上训练的 DCNN,灵敏度和特异性分别为 99.6%和 99.5%,对于在儿科数据集上训练的 DCNN,灵敏度和特异性均为 98%。两个算法之间观察到的性能差异没有统计学意义(p=0.17)。我们的 DCNN 对分类前后位 CXR 的方向具有很高的准确性,当训练数据集减少 95%时,性能仅略有下降。DCNN 快速分类 CXR 可以促进机器学习和质量保证目的的大型图像数据集的注释。

相似文献

[1]
Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs.

J Digit Imaging. 2019-12

[2]
Radiology "forensics": determination of age and sex from chest radiographs using deep learning.

Emerg Radiol. 2021-10

[3]
Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.

Pediatr Radiol. 2019-4-30

[4]
Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms.

Emerg Radiol. 2022-4

[5]
Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs.

Clin Imaging. 2022-7

[6]
Lesion-aware convolutional neural network for chest radiograph classification.

Clin Radiol. 2021-2

[7]
Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.

PLoS Med. 2018-11-20

[8]
Refining dataset curation methods for deep learning-based automated tuberculosis screening.

J Thorac Dis. 2020-9

[9]
Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks.

J Digit Imaging. 2019-10

[10]
Can AI outperform a junior resident? Comparison of deep neural network to first-year radiology residents for identification of pneumothorax.

Emerg Radiol. 2020-8

引用本文的文献

[1]
Deep Learning-Based Estimation of Radiographic Position to Automatically Set Up the X-Ray Prime Factors.

J Imaging Inform Med. 2025-6

[2]
Automated estimation of thoracic rotation in chest X-ray radiographs: a deep learning approach for enhanced technical assessment.

Br J Radiol. 2024-10-1

[3]
Patient Re-Identification Based on Deep Metric Learning in Trunk Computed Tomography Images Acquired from Devices from Different Vendors.

J Imaging Inform Med. 2024-6

[4]
A deep learning approach for projection and body-side classification in musculoskeletal radiographs.

Eur Radiol Exp. 2024-2-14

[5]
Patient Identification Based on Deep Metric Learning for Preventing Human Errors in Follow-up X-Ray Examinations.

J Digit Imaging. 2023-10

[6]
Quality control system for mammographic breast positioning using deep learning.

Sci Rep. 2023-5-1

[7]
Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review.

J Med Syst. 2022-10-15

[8]
Detection and diagnosis of COVID-19 infection in lungs images using deep learning techniques.

Int J Imaging Syst Technol. 2022-3

[9]
Pediatric chest radiograph interpretation: how far has artificial intelligence come? A systematic literature review.

Pediatr Radiol. 2022-7

[10]
Combination of UNet++ and ResNeSt to classify chronic inflammation of the choledochal cystic wall in patients with pancreaticobiliary maljunction.

Br J Radiol. 2022-7-1

本文引用的文献

[1]
Artificial Intelligence and Radiology: Collaboration Is Key.

J Am Coll Radiol. 2018-5

[2]
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.

Clin Radiol. 2018-5

[3]
Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs.

Radiology. 2017-11-2

[4]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[5]
Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging.

Radiology. 2017-7-3

[6]
Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities.

J Digit Imaging. 2017-8

[7]
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks.

Radiology. 2017-4-24

[8]
Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening.

JAMA. 2016-12-13

[9]
Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images.

J Digit Imaging. 2017-4

[10]
High-Throughput Classification of Radiographs Using Deep Convolutional Neural Networks.

J Digit Imaging. 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索