Suppr超能文献

新型冠状病毒2型药物重新利用综述:数据库与机器学习模型

A review of SARS-CoV-2 drug repurposing: databases and machine learning models.

作者信息

Elkashlan Marim, Ahmad Rahaf M, Hajar Malak, Al Jasmi Fatma, Corchado Juan Manuel, Nasarudin Nurul Athirah, Mohamad Mohd Saberi

机构信息

Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.

Division of Metabolic Genetics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates.

出版信息

Front Pharmacol. 2023 Aug 4;14:1182465. doi: 10.3389/fphar.2023.1182465. eCollection 2023.

Abstract

The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) posed a serious worldwide threat and emphasized the urgency to find efficient solutions to combat the spread of the virus. Drug repurposing has attracted more attention than traditional approaches due to its potential for a time- and cost-effective discovery of new applications for the existing FDA-approved drugs. Given the reported success of machine learning (ML) in virtual drug screening, it is warranted as a promising approach to identify potential SARS-CoV-2 inhibitors. The implementation of ML in drug repurposing requires the presence of reliable digital databases for the extraction of the data of interest. Numerous databases archive research data from studies so that it can be used for different purposes. This article reviews two aspects: the frequently used databases in ML-based drug repurposing studies for SARS-CoV-2, and the recent ML models that have been developed for the prospective prediction of potential inhibitors against the new virus. Both types of ML models, Deep Learning models and conventional ML models, are reviewed in terms of introduction, methodology, and its recent applications in the prospective predictions of SARS-CoV-2 inhibitors. Furthermore, the features and limitations of the databases are provided to guide researchers in choosing suitable databases according to their research interests.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的出现对全球构成了严重威胁,并凸显了寻找有效解决方案以抗击该病毒传播的紧迫性。与传统方法相比,药物再利用因其有可能以具有时间和成本效益的方式发现现有FDA批准药物的新用途而受到更多关注。鉴于机器学习(ML)在虚拟药物筛选方面已报道的成功,它有理由作为一种识别潜在SARS-CoV-2抑制剂的有前景的方法。在药物再利用中实施ML需要有可靠的数字数据库来提取感兴趣的数据。众多数据库存档来自研究的研究数据,以便可用于不同目的。本文回顾两个方面:基于ML的SARS-CoV-2药物再利用研究中常用的数据库,以及为前瞻性预测针对这种新病毒的潜在抑制剂而开发的最新ML模型。深度学习模型和传统ML模型这两种类型的ML模型,均从介绍、方法及其在SARS-CoV-2抑制剂前瞻性预测中的最新应用方面进行了综述。此外,还提供了数据库的特点和局限性,以指导研究人员根据其研究兴趣选择合适的数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15bf/10436567/c3780ec203be/fphar-14-1182465-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验