Suppr超能文献

基于色氨酸受体的生物传感器的工程改造,用于改变动态范围和配体偏好。

Engineering of a TrpR-Based Biosensor for Altered Dynamic Range and Ligand Preference.

机构信息

School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States.

出版信息

ACS Synth Biol. 2022 Jun 17;11(6):2175-2183. doi: 10.1021/acssynbio.2c00134. Epub 2022 May 20.

Abstract

Transcriptional factors play a crucial role in regulating cellular functions. Understanding and altering the dynamic behavior of the transcriptional factor-based biosensors will expand our knowledge in investigating biomolecular interactions and facilitating biosynthetic applications. In this study, we characterized and engineered a TrpR-based tryptophan repressor system in . We found that the reconstructed TrpR1- biosensor system exhibited low basal expression and narrow dynamic range in the presence of tryptophan or its analogue 5-hydroxytryptophan (5-HTP). Given the application potential of the biosensor, we introduced engineering approaches in multiple levels to optimize its dynamic behavior. First, the I57 and V58 residues in the ligand-binding pocket were rationally mutated in search of variants with altered ligand specificity. Two TrpR1 variants, V58E and V58K, successfully acquired ligand preference toward tryptophan and 5-HTP, respectively. The biosensor-induced expression levels were increased up to 10-fold with those variants. Furthermore, to pursue broader operational range, we tuned the regulator-operator binding affinity by mutating the binding box of TrpR1. Collectively, we demonstrated that the biosynthesis-significant biosensor TrpR1- can be engineered to acquire extended dynamic ranges and improved ligand preference. The engineered biosensor variants with remarkable dynamic behavior can serve as key genetic elements in high-throughput screening and dynamic regulation in biosynthetic scenarios.

摘要

转录因子在调节细胞功能方面起着至关重要的作用。理解和改变基于转录因子的生物传感器的动态行为将扩展我们对生物分子相互作用的认识,并促进生物合成应用。在本研究中,我们在 中对基于 TrpR 的色氨酸抑制剂系统进行了表征和工程改造。我们发现,在存在色氨酸或其类似物 5-羟色氨酸(5-HTP)的情况下,重建的 TrpR1-生物传感器系统表现出低基础表达和窄动态范围。鉴于生物传感器的应用潜力,我们在多个层面引入了工程方法来优化其动态行为。首先,在配体结合口袋中的 I57 和 V58 残基进行了合理突变,以寻找改变配体特异性的变体。两个 TrpR1 变体,V58E 和 V58K,成功地分别获得了对色氨酸和 5-HTP 的配体偏好。这些变体的生物传感器诱导表达水平提高了 10 倍。此外,为了追求更广泛的操作范围,我们通过突变 TrpR1 的调节子-操纵子结合亲和力来调整调节剂-操纵子的结合亲和力。总的来说,我们证明了可以对具有生物合成意义的生物传感器 TrpR1-进行工程改造,以获得扩展的动态范围和改善的配体偏好。具有显著动态行为的工程生物传感器变体可以作为高通量筛选和生物合成场景中动态调控的关键遗传元件。

相似文献

1
Engineering of a TrpR-Based Biosensor for Altered Dynamic Range and Ligand Preference.
ACS Synth Biol. 2022 Jun 17;11(6):2175-2183. doi: 10.1021/acssynbio.2c00134. Epub 2022 May 20.
3
Exploring the Tunability and Dynamic Properties of MarR-PmarO Sensor System in .
ACS Synth Biol. 2021 Aug 20;10(8):2076-2086. doi: 10.1021/acssynbio.1c00245. Epub 2021 Jul 28.
4
Investigating and Engineering an 1,2-Propanediol-Responsive Transcription Factor-Based Biosensor.
ACS Synth Biol. 2024 Jul 19;13(7):2177-2187. doi: 10.1021/acssynbio.4c00237. Epub 2024 Jul 5.
5
Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
ACS Synth Biol. 2018 May 18;7(5):1303-1314. doi: 10.1021/acssynbio.7b00419. Epub 2018 May 4.
6
Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose.
Microb Cell Fact. 2022 Sep 24;21(1):198. doi: 10.1186/s12934-022-01920-3.
8
Modulation of the Escherichia coli tryptophan repressor protein by engineered peptides.
Biochem Biophys Res Commun. 1998 Jan 6;242(1):71-8. doi: 10.1006/bbrc.1997.7905.

引用本文的文献

1
Development of a lysine biosensor for the dynamic regulation of cadaverine biosynthesis in E. coli.
Microb Cell Fact. 2025 Jun 21;24(1):141. doi: 10.1186/s12934-025-02772-3.
2
Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs.
Cell Rep Phys Sci. 2024 Oct 16;5(10). doi: 10.1016/j.xcrp.2024.102211. Epub 2024 Sep 16.
5
Tunable T7 Promoter Orthogonality on T7RNAP for -Aconitate Decarboxylase Evolution via Base Editor and Screening from Itaconic Acid Biosensor.
ACS Synth Biol. 2023 Oct 20;12(10):3020-3029. doi: 10.1021/acssynbio.3c00344. Epub 2023 Sep 26.
6
Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis.
Biosensors (Basel). 2023 Jun 7;13(6):633. doi: 10.3390/bios13060633.
7
Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors.
Biosensors (Basel). 2023 Mar 28;13(4):428. doi: 10.3390/bios13040428.

本文引用的文献

1
Exploring the Tunability and Dynamic Properties of MarR-PmarO Sensor System in .
ACS Synth Biol. 2021 Aug 20;10(8):2076-2086. doi: 10.1021/acssynbio.1c00245. Epub 2021 Jul 28.
2
Transcription factor-based biosensors: a molecular-guided approach for natural product engineering.
Curr Opin Biotechnol. 2021 Jun;69:172-181. doi: 10.1016/j.copbio.2021.01.008. Epub 2021 Jan 23.
3
Optimization of a -Coumaric Acid Biosensor System for Versatile Dynamic Performance.
ACS Synth Biol. 2021 Jan 15;10(1):132-144. doi: 10.1021/acssynbio.0c00500. Epub 2020 Dec 30.
6
Dynamic control in metabolic engineering: Theories, tools, and applications.
Metab Eng. 2021 Jan;63:126-140. doi: 10.1016/j.ymben.2020.08.015. Epub 2020 Sep 11.
7
Genetic Biosensor Design for Natural Product Biosynthesis in Microorganisms.
Trends Biotechnol. 2020 Jul;38(7):797-810. doi: 10.1016/j.tibtech.2020.03.013. Epub 2020 Apr 28.
8
Custom-made transcriptional biosensors for metabolic engineering.
Curr Opin Biotechnol. 2019 Oct;59:78-84. doi: 10.1016/j.copbio.2019.02.016. Epub 2019 Mar 25.
10
Directed evolution of a synthetic phylogeny of programmable Trp repressors.
Nat Chem Biol. 2018 Apr;14(4):361-367. doi: 10.1038/s41589-018-0006-7. Epub 2018 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验