Bavarian International School, Science Department, Hauptstraße 1, 85778 Haimhausen, Bavaria, Germany.
William H. Miller III Department of Philosophy, Johns Hopkins University, Baltimore, MD 21218, United States of America.
J Inorg Biochem. 2022 Aug;233:111839. doi: 10.1016/j.jinorgbio.2022.111839. Epub 2022 Apr 22.
Globins play a key role in regulating nitric oxide (NO) levels in all forms of life. Five key reactions of NO with mammalian muscle myoglobin (Mb) and red blood cell hemoglobin (Hb) have been examined: (1) reversible NO binding to Fe(II) forms; (2) reversible NO binding to Fe(III) forms; (3) NO dioxygenation by Fe(II)O complexes; (4) autoxidation of Fe(II)NO complexes in the presence of O; and (5) autoreduction of Fe(III)NO complexes. NO reacts rapidly and almost irreversibly with deoxyMb(FeII) in the absence of O, whereas it reacts much more slowly and weakly with metMb(FeIII). The reaction of NO with Mb(FeII)O is very rapid and results in oxidation of the iron atom and dioxygenation of NO to nitrate. Autoxidation of Mb(FeII)NO in air is determined by the slow rate of NO dissociation from the Fe(II)NO complex, which is followed by rapid O binding to the newly formed deoxyMb(FeII) and dioxygenation of the displaced NO to generate NO and metMb(FeIII). MetMb(FeIII)NO autoreduces slowly by addition of a hydroxide ion to bound NO to generate nitrous acid and reduced deoxyMb(FeII), which immediately binds another NO to generate Mb(FeII)NO as the final product. The reverse of this process involves nitrite reduction to NO by deoxyMb(FeII), which can occur on physiological time scales when the globin concentration is in the millimolar range. The relevance of these processes to the regulation of NO metabolism by hemoglobins and myoglobins in humans and other organisms is discussed.
球蛋白在所有生命形式中都起着调节一氧化氮 (NO) 水平的关键作用。已经研究了 NO 与哺乳动物肌肉肌红蛋白 (Mb) 和红细胞血红蛋白 (Hb) 的五个关键反应:(1) Fe(II) 形式的可逆 NO 结合;(2) Fe(III) 形式的可逆 NO 结合;(3) Fe(II)O 配合物的 NO 双加氧作用;(4) O 存在下的 Fe(II)NO 配合物的自动氧化;和 (5) Fe(III)NO 配合物的自还原。在没有 O 的情况下,NO 快速且几乎不可逆地与脱氧 Mb(FeII)反应,而与 metMb(FeIII)反应则要慢得多且弱得多。NO 与 Mb(FeII)O 的反应非常迅速,导致铁原子氧化和 NO 双加氧生成硝酸盐。Mb(FeII)NO 在空气中的自动氧化取决于从 Fe(II)NO 配合物中缓慢解离 NO 的速率,随后迅速与新形成的脱氧 Mb(FeII)结合,并将取代的 NO 快速双加氧生成 NO 和 metMb(FeIII)。MetMb(FeIII)NO 通过向结合的 NO 添加一个氢氧根离子缓慢自还原,生成亚硝酸和还原的脱氧 Mb(FeII),后者立即与另一个 NO 结合,生成最终产物 Mb(FeII)NO。这个过程的逆过程涉及亚硝酸盐通过脱氧 Mb(FeII)还原为 NO,当球蛋白浓度在毫摩尔范围内时,这个过程可以在生理时间尺度上发生。讨论了这些过程与人类和其他生物体中血红蛋白和肌红蛋白对 NO 代谢的调节的相关性。