Department of Chemistry School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA.
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Chembiochem. 2022 Aug 17;23(16):e202200209. doi: 10.1002/cbic.202200209. Epub 2022 Jun 16.
To mimic the levels of spatiotemporal control that exist in nature, tools for chemically induced dimerization (CID) are employed to manipulate protein-protein interactions. Although linker composition is known to influence speed and efficiency of heterobifunctional compounds, modeling or in vitro experiments are often insufficient to predict optimal linker structure. This can be attributed to the complexity of ternary complex formation and the overlapping factors that impact the effective concentration of probe within the cell, such as efflux and passive permeability. Herein, we synthesize a library of modular chemical tools with varying linker structures and perform quantitative microscopy in live cells to visualize dimerization in real-time. We use our optimized probe to demonstrate our ability to recruit a protein of interest (POI) to the mitochondria, cell membrane, and nucleus. Finally, we induce and monitor local and global phase separation. We highlight the importance of quantitative approaches to linker optimization for dynamic systems and introduce new, synthetically accessible tools for the rapid control of protein localization.
为了模拟自然界中存在的时空控制水平,人们采用化学诱导二聚(CID)工具来操纵蛋白质-蛋白质相互作用。尽管连接子的组成已知会影响双功能化合物的速度和效率,但建模或体外实验通常不足以预测最佳连接子结构。这可以归因于三元复合物形成的复杂性和影响细胞内探针有效浓度的重叠因素,例如外排和被动渗透率。在此,我们合成了一系列具有不同连接子结构的模块化化学工具,并在活细胞中进行定量显微镜观察,以实时可视化二聚化。我们使用优化后的探针来证明我们将感兴趣的蛋白质(POI)募集到线粒体、细胞膜和细胞核的能力。最后,我们诱导并监测局部和全局相分离。我们强调了定量方法对于动态系统中连接子优化的重要性,并引入了新的、可合成的工具,用于快速控制蛋白质定位。