Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China.
MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China.
Small Methods. 2022 Aug;6(8):e2200155. doi: 10.1002/smtd.202200155. Epub 2022 May 22.
The spinal cord (SC) is crucial for a myriad of somatosensory, autonomic signal processing, and transductions. Understanding the SC vascular structure and function thus plays an integral part in neuroscience and clinical research. However, the dense layers of myelinated ascending axons on the dorsal side inconveniently grant the SC tissue with high optical scattering property, which significantly hinders the imaging depth of the SC vasculature in vivo. Commonly used antiscattering techniques such as multiphoton fluorescence microscopy have low imaging speed and cannot capture the rapid vascular particle flow without significant motion blur. Here, advantage of the high penetration of near-infrared (NIR)-II fluorescence is taken to demonstrate a deep SC vascular structural image stack up to 350 µm, comparable to two-photon microscopy. Furthermore, the red blood cells are labelled with the clinically approved NIR dye indocyanine. The combination of a fast NIR camera and indocyanine green-red blood cells (RBCs) makes it possible to attain high-speed 100 frame-per-second NIR-II imaging to identify the corresponding changes in RBC velocity during the external hind leg stimulus. For the first time, it is established that the NIR-II region would be a promising spectral window for SC imaging. NIR-II fluorescence microscopy has excellent potential for clinical and basic science research on SC.
脊髓(SC)在处理感觉、自主信号以及转化等方面发挥着重要作用。因此,了解 SC 的血管结构和功能对于神经科学和临床研究至关重要。然而,背侧密集的髓鞘化上行轴突层赋予了 SC 组织高光学散射特性,这极大地限制了 SC 血管在体内的成像深度。常用的抗散射技术,如多光子荧光显微镜,成像速度较慢,无法在没有明显运动模糊的情况下捕捉到快速的血管粒子流。在这里,我们利用近红外(NIR)-II 荧光的高穿透性,展示了高达 350µm 的深度 SC 血管结构图像堆栈,与双光子显微镜相当。此外,我们使用临床批准的近红外染料吲哚菁绿对红细胞进行标记。结合高速近红外相机和吲哚菁绿-红细胞(RBC),我们可以实现高速 100 帧/秒的 NIR-II 成像,以识别在外部后腿刺激期间 RBC 速度的相应变化。这是首次证明 NIR-II 区域将是 SC 成像的一个有前途的光谱窗口。NIR-II 荧光显微镜在 SC 的临床和基础科学研究中具有巨大的潜力。