Reveco-Quiroz Paula, Sandoval-Díaz José, Alvares Danilo
Department of Statistics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Macul, 7820436 Santiago Chile.
Laboratorio Interdisciplinario de Estadística Social (LIES), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna, 4860, Macul, 7820436 Santiago Chile.
Stoch Environ Res Risk Assess. 2022;36(11):3961-3977. doi: 10.1007/s00477-022-02240-z. Epub 2022 May 18.
Pro-environmental behaviors towards climate change can be measured and evaluated in different fields. Typically, surveys are the standard tool for extracting personal information regarding this phenomenon. However, statistical modeling for these surveys is not straightforward, as the response variable is often not explicit. Hence, we propose a set of methodological procedures to deal with pro-environmental behavior data. First, validity evidence through a factorial analysis. Second, indexes are created from factor scores, where one of the latent factors summarizes a target variable. Third, a Beta regression is used to model the index of interest. Fourth, the inferential process is performed from a Bayesian perspective, in which posterior probabilities are used to sort and select the relevant variables. Finally, suitable models are obtained, and conclusions can be drawn from them. As a motivation, we used data from two Chilean surveys to illustrate our methodology as well as interpret and discuss the results.
针对气候变化的环保行为可以在不同领域进行测量和评估。通常,调查是提取有关这一现象的个人信息的标准工具。然而,这些调查的统计建模并非易事,因为响应变量往往不明确。因此,我们提出了一套处理环保行为数据的方法程序。首先,通过因子分析获得效度证据。其次,根据因子得分创建指标,其中一个潜在因子汇总一个目标变量。第三,使用贝塔回归对感兴趣的指标进行建模。第四,从贝叶斯角度进行推理过程,其中后验概率用于对相关变量进行排序和选择。最后,获得合适的模型,并从中得出结论。作为一个实例,我们使用了来自智利两项调查的数据来说明我们的方法,并解释和讨论结果。