Suppr超能文献

非细胞自主因素在颗粒细胞层中间神经元成熟和关键期中的作用

Non-Cell-Autonomous Factors Implicated in Parvalbumin Interneuron Maturation and Critical Periods.

机构信息

Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Labex MemoLife, PSL Research University, Paris, France.

出版信息

Front Neural Circuits. 2022 Apr 26;16:875873. doi: 10.3389/fncir.2022.875873. eCollection 2022.

Abstract

From birth to adolescence, the brain adapts to its environmental stimuli through structural and functional remodeling of neural circuits during critical periods of heightened plasticity. They occur across modalities for proper sensory, motor, linguistic, and cognitive development. If they are disrupted by early-life adverse experiences or genetic deficiencies, lasting consequences include behavioral changes, physiological and cognitive deficits, or psychiatric illness. Critical period timing is orchestrated not only by appropriate neural activity but also by a multitude of signals that participate in the maturation of fast-spiking parvalbumin interneurons and the consolidation of neural circuits. In this review, we describe the various signaling factors that initiate critical period onset, such as BDNF, SPARCL1, or OTX2, which originate either from local neurons or glial cells or from extracortical sources such as the choroid plexus. Critical period closure is established by signals that modulate extracellular matrix and myelination, while timing and plasticity can also be influenced by circadian rhythms and by hormones and corticosteroids that affect brain oxidative stress levels or immune response. Molecular outcomes include lasting epigenetic changes which themselves can be considered signals that shape downstream cross-modal critical periods. Comprehensive knowledge of how these signals and signaling factors interplay to influence neural mechanisms will help provide an inclusive perspective on the effects of early adversity and developmental defects that permanently change perception and behavior.

摘要

从出生到青春期,大脑通过在关键的高可塑性时期对神经回路进行结构和功能重塑来适应环境刺激。这些重塑发生在各种感觉、运动、语言和认知发展模态中。如果它们被早期生活中的不利经历或遗传缺陷所破坏,那么持久的后果包括行为变化、生理和认知缺陷或精神疾病。关键期的时间安排不仅受到适当的神经活动的调节,还受到多种信号的调节,这些信号参与了快速放电的 parvalbumin 中间神经元的成熟和神经回路的巩固。在这篇综述中,我们描述了启动关键期开始的各种信号因子,如 BDNF、SPARCL1 或 OTX2,它们要么来自局部神经元或神经胶质细胞,要么来自脉络丛等皮质外来源。关键期的关闭是通过调节细胞外基质和髓鞘形成的信号来建立的,而时间和可塑性也可以受到昼夜节律和影响大脑氧化应激水平或免疫反应的激素和皮质类固醇的影响。分子结果包括持久的表观遗传变化,这些变化本身可以被视为塑造下游跨模态关键期的信号。全面了解这些信号和信号因子如何相互作用以影响神经机制,将有助于提供一个全面的视角,了解早期逆境和发育缺陷如何永久改变感知和行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3fd/9115720/4270cfac35ee/fncir-16-875873-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验