Suppr超能文献

基于经典与卷积神经网络融合及改进的微观特征选择方法的 COVID19 检测与分类智能设计。

An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach.

机构信息

Department of Computer Science, University of Wah, Wah, Pakistan.

National University of Technology (NUTECH), IJP Road Islamabad, Pakistan.

出版信息

Microsc Res Tech. 2021 Oct;84(10):2254-2267. doi: 10.1002/jemt.23779. Epub 2021 May 8.

Abstract

Coronavirus19 is caused due to infection in the respiratory system. It is the type of RNA virus that might infect animal and human species. In the severe stage, it causes pneumonia in human beings. In this research, hand-crafted and deep microscopic features are used to classify lung infection. The proposed work consists of two phases; in phase I, infected lung region is segmented using proposed U-Net deep learning model. The hand-crafted features are extracted such as histogram orientation gradient (HOG), noise to the harmonic ratio (NHr), and segmentation based fractal texture analysis (SFTA) from the segmented image, and optimum features are selected from each feature vector using entropy. In phase II, local binary patterns (LBPs), speeded up robust feature (Surf), and deep learning features are extracted using a pretrained network such as inceptionv3, ResNet101 from the input CT images, and select optimum features based on entropy. Finally, the optimum selected features using entropy are fused in two ways, (i) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are horizontally concatenated/fused (ii) The hand-crafted features (HOG, NHr, SFTA, LBP, SURF) are combined/fused with deep features. The fused optimum features vector is passed to the ensemble models (Boosted tree, bagged tree, and RUSBoosted tree) in two ways for the COVID19 classification, (i) classification using fused hand-crafted features (ii) classification using fusion of hand-crafted features and deep features. The proposed methodology is tested /evaluated on three benchmark datasets. Two datasets employed for experiments and results show that hand-crafted & deep microscopic feature's fusion provide better results compared to only hand-crafted fused features.

摘要

新型冠状病毒 19 是由于呼吸系统感染引起的。它是一种可能感染动物和人类的 RNA 病毒。在严重阶段,它会导致人类肺炎。在这项研究中,使用手工制作和深度学习微观特征来对肺部感染进行分类。所提出的工作分为两个阶段;在第一阶段,使用提出的 U-Net 深度学习模型对感染的肺部区域进行分割。从分割图像中提取手工制作的特征,如直方图方向梯度(HOG)、噪声到谐波比(NHr)和基于分割的分形纹理分析(SFTA),并使用熵从每个特征向量中选择最优特征。在第二阶段,使用预训练的网络(如 inceptionv3、ResNet101)从输入的 CT 图像中提取局部二值模式(LBP)、快速鲁棒特征(Surf)和深度学习特征,并根据熵选择最优特征。最后,使用熵选择最优特征以两种方式融合,(i)手工制作的特征(HOG、NHr、SFTA、LBP、SURF)水平连接/融合(ii)手工制作的特征(HOG、NHr、SFTA、LBP、SURF)与深度特征组合/融合。融合的最优特征向量以两种方式传递给集成模型(Boosted tree、bagged tree 和 RUSBoosted tree)进行 COVID19 分类,(i)使用融合的手工制作特征进行分类,(ii)使用融合的手工制作特征和深度特征进行分类。该方法在三个基准数据集上进行了测试/评估。两个数据集用于实验,结果表明,与仅融合手工制作特征相比,手工制作和深度学习微观特征的融合提供了更好的结果。

相似文献

本文引用的文献

10
Contrastive Cross-Site Learning With Redesigned Net for COVID-19 CT Classification.基于重新设计的网络的 COVID-19 CT 分类对比跨站点学习。
IEEE J Biomed Health Inform. 2020 Oct;24(10):2806-2813. doi: 10.1109/JBHI.2020.3023246. Epub 2020 Sep 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验