Scheuer Laura, Ruhwedel Moritz, Karfaridis Dimitrios, Vasileiadis Isaak G, Sokoluk Dominik, Torosyan Garik, Vourlias George, Dimitrakopoulos George P, Rahm Marco, Hillebrands Burkard, Kehagias Thomas, Beigang René, Papaioannou Evangelos Th
Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Kaiserslautern 67663, Germany.
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
iScience. 2022 Apr 29;25(5):104319. doi: 10.1016/j.isci.2022.104319. eCollection 2022 May 20.
Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic (FM)/non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectroscopy and have great potential in scientific and industrial applications. In this work, we focus on the impact of the FM/NM interface on the THz emission by investigating Fe/Pt bilayers with engineered interfaces. In particular, we intentionally modify the Fe/Pt interface by inserting an ordered L1-FePt alloy interlayer. Subsequently, we establish that a Fe/L1-FePt (2 nm)/Pt configuration is significantly superior to a Fe/Pt bilayer structure, regarding THz emission amplitude. The latter depends on the extent of alloying on either side of the interface. The unique trilayer structure opens new perspectives in terms of material choices for the next generation of spintronic THz emitters.
纳米磁性和自旋电子学的最新进展使得利用超快自旋物理实现太赫兹(THz)发射成为可能。由铁磁(FM)/非磁性(NM)薄膜异质结构组成的自旋电子太赫兹发射器,在太赫兹光谱学应用中展现出了令人印象深刻的特性,并且在科学和工业应用中具有巨大潜力。在这项工作中,我们通过研究具有工程界面的Fe/Pt双层膜,聚焦于FM/NM界面对太赫兹发射的影响。具体而言,我们通过插入有序的L1-FePt合金中间层来有意修饰Fe/Pt界面。随后,我们确定,就太赫兹发射幅度而言,Fe/L1-FePt(2纳米)/Pt结构明显优于Fe/Pt双层结构。后者取决于界面两侧的合金化程度。这种独特的三层结构为下一代自旋电子太赫兹发射器的材料选择开辟了新的前景。