Suppr超能文献

基于反铁磁-铁磁异质结构的无外场太赫兹发射器

Antiferromagnetic-Ferromagnetic Heterostructure-Based Field-Free Terahertz Emitters.

作者信息

Wu Xiaojun, Wang Hanchen, Liu Haijiang, Wang Yizhan, Chen Xinhou, Chen Peng, Li Peiyan, Han Xiufeng, Miao Jungang, Yu Haiming, Wan Caihua, Zhao Jimin, Chen Sai

机构信息

School of Electronic and Information Engineering, Beihang University, Beijing, 100191, P. R. China.

Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201204, P. R. China.

出版信息

Adv Mater. 2022 Oct;34(42):e2204373. doi: 10.1002/adma.202204373. Epub 2022 Aug 24.

Abstract

Recently, ferromagnetic-heterostructure spintronic terahertz (THz) emitters have been recognized as one of the most promising candidates for next-generation THz sources, owing to their peculiarities of high efficiency, high stability, low cost, ultrabroad bandwidth, controllable polarization, and high scalability. Despite the substantial efforts, they rely on external magnetic fields to initiate the spin-to-charge conversion, which hitherto greatly limits their proliferation as practical devices. Here, a unique antiferromagnetic-ferromagnetic (IrMn |Co Fe B ) heterostructure is innovated, and it is demonstrated that it can efficiently generate THz radiation without any external magnetic field. It is assigned to the exchange bias or interfacial exchange coupling effect and enhanced anisotropy. By precisely balancing the exchange bias effect and enhanced THz radiation efficiency, an optimized 5.6 nm-thick IrMn |Co Fe B |W trilayer heterostructure is successfully realized, yielding an intensity surpassing that of Pt|Co Fe B |W. Moreover, the intensity of THz emission is further boosted by togethering the trilayer sample and bilayer sample. Besides, the THz polarization may be flexibly controlled by rotating the sample azimuthal angle, manifesting sophisticated active THz field manipulation capability. The field-free coherent THz emission that is demonstrated here shines light on the development of spintronic THz optoelectronic devices.

摘要

最近,铁磁异质结构自旋电子太赫兹(THz)发射器因其具有高效率、高稳定性、低成本、超宽带宽、可控极化和高可扩展性等特点,被认为是下一代太赫兹源最有潜力的候选者之一。尽管付出了巨大努力,但它们依赖外部磁场来启动自旋到电荷的转换,这在很大程度上限制了它们作为实际器件的推广。在此,创新了一种独特的反铁磁 - 铁磁(IrMn|CoFeB)异质结构,并证明其无需任何外部磁场就能高效产生太赫兹辐射。这归因于交换偏置或界面交换耦合效应以及增强的各向异性。通过精确平衡交换偏置效应和提高太赫兹辐射效率,成功实现了优化的5.6纳米厚的IrMn|CoFeB|W三层异质结构,其强度超过了Pt|CoFeB|W。此外,将三层样品和双层样品结合在一起可进一步提高太赫兹发射强度。此外,通过旋转样品方位角可灵活控制太赫兹极化,展现出复杂的有源太赫兹场操控能力。这里展示的无场相干太赫兹发射为自旋电子太赫兹光电器件的发展提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验