Raubenheimer David, Senior Alistair M, Mirth Christen, Cui Zhenwei, Hou Rong, Le Couteur David G, Solon-Biet Samantha M, Léopold Pierre, Simpson Stephen J
The University of Sydney, Charles Perkins Centre and School of Life and Environmental Sciences, Sydney, Australia.
Zhengzhou University, Centre for Nutritional Ecology and Centre for Sport Nutrition and Health, Zhengzhou, China.
iScience. 2022 Apr 28;25(5):104315. doi: 10.1016/j.isci.2022.104315. eCollection 2022 May 20.
Animals require specific blends of nutrients that vary across the life course and with circumstances, e.g., health and activity levels. Underpinning and complicating these requirements is that individual traits may be optimized on different dietary compositions leading to nutrition-mediated trade-offs among outcomes. Additionally, the food environment may constrain which nutrient mixtures are achievable. Natural selection has equipped animals for solving such multi-dimensional, dynamic challenges of nutrition, but little is understood about the details and their theoretical and practical implications. We present an integrative framework, nutritional geometry, which models complex nutritional interactions in the context of multiple nutrients and across levels of biological organization (e.g., cellular, individual, and population) and levels of analysis (e.g., mechanistic, developmental, ecological, and evolutionary). The framework is generalizable across different situations and taxa. We illustrate this using examples spanning insects to primates and settings (laboratory, and the wild), and demonstrate its relevance for human health.
动物需要特定的营养混合物,这些混合物会随着生命历程以及健康和活动水平等情况而变化。支撑并使这些需求变得复杂的是,个体特征可能在不同的饮食组成上得到优化,从而导致不同结果之间出现营养介导的权衡。此外,食物环境可能会限制哪些营养混合物是可以获取的。自然选择使动物具备了解决此类多维、动态营养挑战的能力,但对于其中的细节及其理论和实际意义,我们知之甚少。我们提出了一个综合框架——营养几何学,它在多种营养素的背景下以及跨生物组织层次(如细胞、个体和种群)和分析层次(如机制、发育、生态和进化)对复杂的营养相互作用进行建模。该框架可推广到不同的情况和分类群。我们通过从昆虫到灵长类动物以及不同环境(实验室和野外)的例子来说明这一点,并证明其与人类健康的相关性。