Zhou Dongjie, Zhang Jinguo, Tan Chong, Li Liyan, Qiu Qianli, Zhang Zongkun, Sun Yan, Zhou Lei, Dai Ning, Chu Junhao, Hao Jiaming
State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China.
University of Chinese Academy of Sciences, No. 19A Yu Quan Road, Beijing 100049, China.
Nanophotonics. 2025 Jan 17;14(8):1101-1111. doi: 10.1515/nanoph-2024-0538. eCollection 2025 Apr.
The development of novel camouflage technologies is of great significance, exerting an impact on both fundamental science and diverse military and civilian applications. Effective camouflage aims to reduce the recognizability of an object, making it to effortlessly blend with the environment. For infrared camouflage, it necessitates precise control over surface emissivity and temperature to ensure that the target blends effectively with the surrounding infrared background. This study presents a semimetal-dielectric-metal metasurface emitter engineered for the application of infrared camouflage. The metasurface, with a total thickness of only 545 nm, consists of a Bi micro-disk array and a continuous ZnS and Ti film beneath it. Unlike conventional metal-based metasurface design, our approach leverages the unique optical properties of Bi, achieving an average emissivity of 0.91 in the 5-8 μm non-atmospheric transparency window. Experimental results indicate that the metasurface emitter achieves lower radiation and actual temperatures compared to those observed in comparative experiments, highlighting its superior energy dissipation and thermal stability. The metasurface offers advantages such as structural simplicity, cost-effectiveness, angular insensitivity, and deep-subwavelength features, rendering it suitable for a range of applications including military camouflage and anti-counterfeiting, with potential for broad deployment in infrared technologies.
新型伪装技术的发展具有重要意义,对基础科学以及各种军事和民用应用都产生影响。有效的伪装旨在降低物体的可识别性,使其能够轻松地与环境融合。对于红外伪装而言,需要精确控制表面发射率和温度,以确保目标与周围的红外背景有效融合。本研究提出了一种用于红外伪装应用的半金属-电介质-金属超表面发射器。该超表面总厚度仅为545纳米,由一个铋微盘阵列及其下方的连续硫化锌和钛薄膜组成。与传统的基于金属的超表面设计不同,我们的方法利用了铋独特的光学特性,在5-8微米的非大气透明窗口内实现了0.91的平均发射率。实验结果表明,与对比实验中观察到的情况相比,该超表面发射器实现了更低的辐射和实际温度,突出了其卓越的能量耗散和热稳定性。该超表面具有结构简单、成本效益高、角度不敏感和深亚波长特征等优点,适用于包括军事伪装和防伪在内的一系列应用,在红外技术领域具有广泛部署的潜力。