Suppr超能文献

一种基于广义Transformer 的脉搏检测算法。

A Generalized Transformer-Based Pulse Detection Algorithm.

机构信息

Northwestern Argonne Institute of Science and Engineering, Northwestern University, 2205 Tech Drive Suite 1-160, Evanston, 60208 Illinois, United States.

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, 60439 Illinois, United States.

出版信息

ACS Sens. 2022 Sep 23;7(9):2710-2720. doi: 10.1021/acssensors.2c01218. Epub 2022 Aug 30.

Abstract

Pulse-like signals are ubiquitous in the field of single molecule analysis, , electrical or optical pulses caused by analyte translocations in nanopores. The primary challenge in processing pulse-like signals is to capture the pulses in noisy backgrounds, but current methods are subjectively based on a user-defined threshold for pulse recognition. Here, we propose a generalized machine-learning based method, named pulse detection transformer (PETR), for pulse detection. PETR determines the start and end time points of individual pulses, thereby singling out pulse segments in a time-sequential trace. It is objective without needing to specify any threshold. It provides a generalized interface for downstream algorithms for specific application scenarios. PETR is validated using both simulated and experimental nanopore translocation data. It returns a competitive performance in detecting pulses through assessing them with several standard metrics. Finally, the generalization nature of the PETR output is demonstrated using two representative algorithms for feature extraction.

摘要

在单分子分析领域,脉冲信号无处不在,包括由纳米孔中分析物转位引起的电脉冲或光脉冲。处理脉冲信号的主要挑战是在噪声背景中捕获脉冲,但目前的方法主要基于用户定义的脉冲识别阈值。在这里,我们提出了一种基于广义机器学习的方法,称为脉冲检测变压器(Pulse Detection Transformer,简称 PETR),用于脉冲检测。PETR 确定单个脉冲的起始和结束时间点,从而在时间序列迹中单独提取脉冲段。它是客观的,不需要指定任何阈值。它为特定应用场景的下游算法提供了通用接口。我们使用模拟和实验纳米孔转位数据对 PETR 进行了验证。通过使用几个标准指标对其进行评估,它在检测脉冲方面表现出了有竞争力的性能。最后,使用两种用于特征提取的代表性算法证明了 PETR 输出的泛化性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f86c/9513795/208c899a7e92/se2c01218_0003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验