Suppr超能文献

用于生物医学应用的聚(ε-己内酯)-聚(乙二醇)无催化剂等离子体辅助共聚

Catalyst-Free Plasma-Assisted Copolymerization of Poly(ε-caprolactone)-poly(ethylene glycol) for Biomedical Applications.

作者信息

Bhatt Sudhir, Pulpytel Jerome, Mirshahi Massoud, Arefi-Khonsari Farzaneh

机构信息

Laboratoire de Génie des Procédés Plasmas et Traitement de Surface, Université Pierre et Marie Curie, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris, France.

UMRS 872, Centre de Recherche des Cordeliers, Faculté de Médecine Paris VI, 15 rue de l Ecole de Médecine, 75006 Paris, France.

出版信息

ACS Macro Lett. 2012 Jun 19;1(6):764-767. doi: 10.1021/mz300188s. Epub 2012 Jun 6.

Abstract

Catalyst-free ring-opening polymerization (ROP) strategy was developed to overcome the disadvantage of incomplete and expensive removal of catalyst used during the multistep wet chemical processes. Nano-sized biocompatible and low molecular weight poly(ε-carolactone)-poly(ethylene glycol) (PCL-PEG) copolymer coatings were deposited via a single-step, low-pressure, pulsed-plasma polymerization process. Experiments were performed at different monomer feed ratio and effective plasma power. The coatings were analyzed by XPS, as well as MALDI ToF. Ellipsometric measurement showed deposition rates ranging from 1.3 to 3 nm/min, depending on the ratio of the PCL/PEG precursors introduced in the reactor. Our results have demonstrated that plasma copolymerized PCL-PEG coatings can be tailored in such a way to be cell adherent, convenient for biomedical implants such as artificial skin substrates, or cell repellent, which can be used as antibiofouling surfaces for urethral catheters, cardiac stents, and so on. The global objective of this study is to tailor the surface properties of PCL by copolymerizing it with PEG in the pulsed plasma environment to improve their applicability in tissue engineering and biomedical science.

摘要

为克服多步湿化学过程中使用的催化剂去除不完全且成本高昂的缺点,开发了无催化剂开环聚合(ROP)策略。通过单步、低压、脉冲等离子体聚合工艺沉积了纳米级生物相容性且低分子量的聚(ε-己内酯)-聚(乙二醇)(PCL-PEG)共聚物涂层。在不同的单体进料比和有效等离子体功率下进行了实验。通过XPS以及基质辅助激光解吸电离飞行时间质谱(MALDI ToF)对涂层进行了分析。椭偏测量表明,沉积速率在1.3至3纳米/分钟之间,这取决于引入反应器中的PCL/PEG前体的比例。我们的结果表明,等离子体共聚合的PCL-PEG涂层可以通过定制,使其具有细胞粘附性,适用于诸如人造皮肤基质等生物医学植入物,或者具有细胞排斥性,可作为尿道导管、心脏支架等的抗生物污损表面。本研究的总体目标是通过在脉冲等离子体环境中将PCL与PEG共聚来调整PCL的表面性质,以提高其在组织工程和生物医学科学中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验