CAP-Paris Tech, INSERM U1275, Department of Oncologic & Digestive Surgery, Université de Paris, Lariboisière Hospital, 2 rue Ambroise Paré, 75010, Paris, France.
Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Universités, University Paris 06, CNRS, 4 place Jussieu, 75005, Paris, France.
BMC Cancer. 2020 Jun 17;20(1):565. doi: 10.1186/s12885-020-06989-w.
It may be impossible to perform cancer surgery with free margins in the presence of an unresectable structure. Local drug treatment after surgery has been proposed to increase the rate of tumor control.
Multi-nanolayers (10-330 nm) were generated by a low-pressure (375mTorr) inductively coupled plasma (13.56 MHz) reactor for anticancer drug delivery by the deposition of polycaprolactone-polyethylene glycol multistack barrier on the collagen membrane (100 μm thickness). Carboplatin (300 μg/cm) was used for the in vitro and in vivo investigations. Energy-dispersive X-ray spectroscopy (15 keV), scanning electron microscopy and inductively coupled plasma mass spectrometry were used to detect the presence of carboplatin in the nanolayer, the tumor sample and the culture medium. Preclinical studies were performed on ovarian (OVCAR-3NIH) and colon (CT26) cancer cell lines as xenografts (45 days) and allografts (23 days) in Swiss-nude (n = 6) and immunocompetent BALB/cByJ mice (n = 24), respectively.
The loading of carboplatin or other drugs between the nanofilm on the collagen membrane did not modify the mesh complex architecture or the drug properties. Drugs were detectable on the membrane for more than 2 weeks in the in vitro analysis and more than 10 days in the in vivo analysis. Cytotoxic mesh decreased cell adherence (down 5.42-fold) and induced cancer cell destruction (up to 7.87-fold). Implantation of the mesh on the mouse tumor nodule modified the cell architecture and decreased the tumor size (50.26%) compared to the control by inducing cell apoptosis.
Plasma technology allows a mesh to be built with multi-nanolayer anticancer drug delivery on collagen membranes.
在存在不可切除结构的情况下,可能无法进行有自由边缘的癌症手术。术后局部药物治疗已被提议用于提高肿瘤控制率。
通过在胶原膜(100μm 厚)上沉积聚己内酯-聚乙二醇多堆栈阻挡层,在低压(375mTorr)感应耦合等离子体(13.56MHz)反应器中生成多纳米层(10-330nm)以进行抗癌药物输送。使用卡铂(300μg/cm)进行体外和体内研究。能量色散 X 射线光谱(15keV)、扫描电子显微镜和电感耦合等离子体质谱用于检测纳米层、肿瘤样本和培养基中卡铂的存在。在卵巢(OVCAR-3NIH)和结肠(CT26)癌细胞系作为异种移植物(45 天)和同种异体移植物(23 天)的情况下,在瑞士裸鼠(n=6)和免疫功能正常的 BALB/cByJ 小鼠(n=24)中进行了临床前研究。
在胶原膜上的纳米膜之间加载卡铂或其他药物不会改变网格复杂结构或药物性质。在体外分析中,药物在膜上可检测超过 2 周,在体内分析中可检测超过 10 天。细胞毒性网格降低了细胞黏附(降低 5.42 倍)并诱导癌细胞破坏(高达 7.87 倍)。与对照组相比,将网格植入小鼠肿瘤结节会通过诱导细胞凋亡来改变细胞结构并使肿瘤大小减小(50.26%)。
等离子体技术允许在胶原膜上构建具有多纳米层抗癌药物输送的网格。