Suppr超能文献

GSK2556286 是一种新型抗结核候选药物,具有缩短结核病治疗疗程的潜力。

GSK2556286 Is a Novel Antitubercular Drug Candidate Effective with the Potential To Shorten Tuberculosis Treatment.

机构信息

Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins Universitygrid.21107.35grid.471401.7grid.21107.35 School of Medicine, Baltimore, Maryland, USA.

Diseases of the Developing World, GlaxoSmithKline R+D Limited, Tres Cantos, Madrid, Spain.

出版信息

Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0013222. doi: 10.1128/aac.00132-22. Epub 2022 May 24.

Abstract

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC] = 0.07 μM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).

摘要

在一项使用结核分枝杆菌感染的巨噬细胞进行的高通量化合物筛选活动中,发现了一种新的结核病治疗候选药物。GSK2556286 抑制人巨噬细胞内的生长(半数抑制浓度 [IC] = 0.07 μM),对含胆固醇培养基中的细胞外细菌具有活性,并且与已知的抗结核药物没有交叉耐药性。此外,它在不同的结核分枝杆菌(TB)小鼠模型中表现出疗效,并且在两种临床前物种中具有足够的安全性特征。这些特征表明该化合物具有一种尚未完全定义的新型作用模式,对多药耐药(MDR)或广泛耐药(XDR)和药物敏感(DS)结核分枝杆菌均有效,有可能缩短新型联合药物方案的治疗时间。(该研究已在 ClinicalTrials.gov 上注册,标识符为 NCT04472897)。

相似文献

1
GSK2556286 Is a Novel Antitubercular Drug Candidate Effective with the Potential To Shorten Tuberculosis Treatment.
Antimicrob Agents Chemother. 2022 Jun 21;66(6):e0013222. doi: 10.1128/aac.00132-22. Epub 2022 May 24.
2
The diagnostic accuracy of the GenoType(®) MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs.
Cochrane Database Syst Rev. 2014 Oct 29(10):CD010705. doi: 10.1002/14651858.CD010705.pub2.
3
Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin.
Cochrane Database Syst Rev. 2022 May 18;5(5):CD014841. doi: 10.1002/14651858.CD014841.pub2.
4
Evaluation of the role of and in the dominant multidrug-resistant clone B0/W148.
Microbiol Spectr. 2025 Jul;13(7):e0322424. doi: 10.1128/spectrum.03224-24. Epub 2025 May 22.
5
Nitric Oxide Therapeutics: New Hopes for More Effective Tuberculosis Treatment Combine with Targeted and Controlled Nanotechnology.
Int J Nanomedicine. 2025 Jul 19;20:9195-9218. doi: 10.2147/IJN.S531255. eCollection 2025.
6
Comprehensive evaluation of the MeltPro MTB/PZA assay for prediction of pyrazinamide resistance in multidrug-resistant tuberculosis.
Microbiol Spectr. 2025 Jul;13(7):e0274524. doi: 10.1128/spectrum.02745-24. Epub 2025 May 22.
7
Diverse impacts of different rpoB mutations on the anti-tuberculosis efficacy of capreomycin.
EBioMedicine. 2025 May 30;117:105776. doi: 10.1016/j.ebiom.2025.105776.
8
Identification and quantification of variants in fluoroquinolone-resistant in a MeltArray reaction.
J Clin Microbiol. 2025 Jul 9;63(7):e0014625. doi: 10.1128/jcm.00146-25. Epub 2025 Jun 3.

引用本文的文献

1
Revolutionizing tuberculosis treatment: Breakthroughs, challenges, and hope on the horizon.
Acta Pharm Sin B. 2025 Mar;15(3):1311-1332. doi: 10.1016/j.apsb.2025.01.023. Epub 2025 Jan 31.
2
Predicting tuberculosis drug efficacy in preclinical and clinical models from data.
iScience. 2025 Jan 30;28(3):111932. doi: 10.1016/j.isci.2025.111932. eCollection 2025 Mar 21.
3
Antibacterials with Novel Chemical Scaffolds in Clinical Development.
Drugs. 2025 Mar;85(3):293-323. doi: 10.1007/s40265-024-02137-x. Epub 2025 Jan 23.
4
Environmental fungi target thiol homeostasis to compete with Mycobacterium tuberculosis.
PLoS Biol. 2024 Dec 3;22(12):e3002852. doi: 10.1371/journal.pbio.3002852. eCollection 2024 Dec.
6
Environmental sphagnum-associated fungi target thiol homeostasis to compete with .
bioRxiv. 2024 Sep 23:2024.09.23.614403. doi: 10.1101/2024.09.23.614403.
7
Contribution of direct InhA inhibitors to novel drug regimens in a mouse model of tuberculosis.
Antimicrob Agents Chemother. 2024 Nov 6;68(11):e0035724. doi: 10.1128/aac.00357-24. Epub 2024 Sep 30.
8
Spectinamide MBX-4888A exhibits favorable lesion and tissue distribution and promotes treatment shortening in advanced murine models of tuberculosis.
Antimicrob Agents Chemother. 2024 Nov 6;68(11):e0071624. doi: 10.1128/aac.00716-24. Epub 2024 Sep 30.
9
Projected health and economic effects of a pan-tuberculosis treatment regimen: a modelling study.
Lancet Glob Health. 2024 Oct;12(10):e1629-e1637. doi: 10.1016/S2214-109X(24)00284-5. Epub 2024 Aug 16.
10
A Review of Antibacterial Candidates with New Modes of Action.
ACS Infect Dis. 2024 Oct 11;10(10):3440-3474. doi: 10.1021/acsinfecdis.4c00218. Epub 2024 Jul 17.

本文引用的文献

1
Pharmacological and genetic activation of cAMP synthesis disrupts cholesterol utilization in Mycobacterium tuberculosis.
PLoS Pathog. 2022 Feb 8;18(2):e1009862. doi: 10.1371/journal.ppat.1009862. eCollection 2022 Feb.
2
Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters.
Clin Microbiol Rev. 2020 Apr 1;33(3). doi: 10.1128/CMR.00159-19. Print 2020 Jun 17.
3
Telacebec (Q203), a New Antituberculosis Agent.
N Engl J Med. 2020 Mar 26;382(13):1280-1281. doi: 10.1056/NEJMc1913327.
4
Treatment of Highly Drug-Resistant Pulmonary Tuberculosis.
N Engl J Med. 2020 Mar 5;382(10):893-902. doi: 10.1056/NEJMoa1901814.
5
drug discovery models for relevant for host infection.
Expert Opin Drug Discov. 2020 Mar;15(3):349-358. doi: 10.1080/17460441.2020.1707801. Epub 2020 Jan 3.
6
Reference set of Mycobacterium tuberculosis clinical strains: A tool for research and product development.
PLoS One. 2019 Mar 25;14(3):e0214088. doi: 10.1371/journal.pone.0214088. eCollection 2019.
7
A Refined Developability Classification System.
J Pharm Sci. 2018 Aug;107(8):2020-2032. doi: 10.1016/j.xphs.2018.03.030. Epub 2018 Apr 14.
8
Preclinical Efficacy Testing of New Drug Candidates.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0034-2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验