Division of Pediatrics and Neonatal Critical Care, "A.Beclere" Medical Center, Paris Saclay University Hospitals, APHP, Paris, France.
Division of Pediatrics and Neonatal Critical Care, "A.Beclere" Medical Center, Paris Saclay University Hospitals, APHP, Paris, France; and Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris Saclay University, Paris, France.
Respir Care. 2022 Jul;67(7):850-856. doi: 10.4187/respcare.09721. Epub 2022 May 24.
High-frequency oscillatory ventilation (HFOV) is widely used in neonatal critical care, and several modern ventilators using different technologies are available to provide HFOV. These devices have different technical characteristics that might interact with patient lung mechanics to influence the effectiveness of ventilation. To verify this, we studied the oscillation transmission of 5 neonatal oscillators in a lung model mimicking the mechanical patterns commonly observed in neonatal practice.
This was a benchtop, in vitro, physiological, pragmatic study using a model mimicking airways and lung of a 1-kg preterm neonate and the following patterns: normal (compliance: 1.0 mL/cm HO, resistance: 50 cm HO/L/s), restrictive (compliance: 0.3 mL/cm HO, resistance: 50 cm HO/L/s), and mixed mechanics (compliance: 0.3 mL/cm HO, resistance: 250 cm HO/L/s). Several permutations of HFOV parameters (variable mean airway pressure or amplitude or frequency protocols) were tested. Oscillations were measured with a dedicated pressure transducer validated for use during HFOV, and oscillatory pressure ratio (OPR) was calculated to estimate the oscillation transmission.
Overall OPR (calculated on all experiments) was significantly different between ventilators and the mechanical patterns (both < .001). Different ventilators and patterns accounted for 35.6% and 20.6% of the variation in oscillation transmission, respectively. Sub-analyses per changing amplitude or frequency protocols and multivariate regressions showed that VN500 (standardized β coefficient [St.β]: 0.548, < .001) and Fabian HFO (St.β: 0.421, < .001; adjusted R: 0.615) provided the best oscillation transmission. Fabian HFO also delivered oscillations with the lowest variability when increasing amplitude.
In an experimental setting mimicking typical neonatal lung disorders, the oscillation transmission was more dependent on the ventilator model than on the mechanical lung conditions at equal HFOV parameters. Fabian HFO and VN500 provided better oscillation transmission overall, and when increasing amplitude, Fabian HFO delivered oscillations with the lowest variability.
高频振荡通气(HFOV)在新生儿重症监护中得到广泛应用,目前有几种使用不同技术的现代呼吸机可提供 HFOV。这些设备具有不同的技术特点,可能会与患者的肺力学相互作用,从而影响通气效果。为了验证这一点,我们在一个模拟新生儿临床常见机械模式的肺模型中研究了 5 种新生儿振荡器的振荡传递。
这是一项在体外进行的基于生理学的实用研究,使用了一个模拟 1 公斤早产儿气道和肺的模型,以及以下模式:正常(顺应性:1.0 毫升/厘米 H2O,阻力:50 厘米 H2O/L/s)、限制(顺应性:0.3 毫升/厘米 H2O,阻力:50 厘米 H2O/L/s)和混合力学(顺应性:0.3 毫升/厘米 H2O,阻力:250 厘米 H2O/L/s)。测试了几种 HFOV 参数(可变平均气道压力或振幅或频率方案)的组合。使用专门的压力换能器测量振荡,该换能器经过验证可用于 HFOV,计算振荡比(OPR)以估计振荡传递。
总体而言,振荡比(在所有实验中计算)在不同的呼吸机和机械模式之间有显著差异(均 <.001)。不同的呼吸机和模式分别解释了振荡传递变化的 35.6%和 20.6%。根据振幅或频率方案的变化进行的亚分析和多元回归显示,VN500(标准化β系数[St.β]:0.548, <.001)和 Fabian HFO(St.β:0.421, <.001;调整后的 R:0.615)提供了最佳的振荡传递。当振幅增加时,Fabian HFO 还能提供振荡,其变异性最低。
在模拟典型新生儿肺部疾病的实验环境中,振荡传递更多地取决于呼吸机模型,而不是在相同 HFOV 参数下的机械肺条件。Fabian HFO 和 VN500 总体上提供了更好的振荡传递,当振幅增加时,Fabian HFO 提供的振荡变异性最低。