Suppr超能文献

全身炎症标志物在监测乳腺癌患者新辅助化疗反应中的附加价值。

Added value of systemic inflammation markers for monitoring response to neoadjuvant chemotherapy in breast cancer patients.

作者信息

Ke Zi-Rui, Chen Wei, Li Man-Xiu, Wu Shun, Jin Li-Ting, Wang Tie-Jun

机构信息

Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology and Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan 430079, Hubei Province, China.

出版信息

World J Clin Cases. 2022 Apr 16;10(11):3389-3400. doi: 10.12998/wjcc.v10.i11.3389.

Abstract

BACKGROUND

Complete response after neoadjuvant chemotherapy (rNACT) elevates the surgical outcomes of patients with breast cancer, however, non-rNACT have a higher risk of death and recurrence.

AIM

To establish novel machine learning (ML)-based predictive models for predicting probability of rNACT in breast cancer patients who intends to receive NACT.

METHODS

A retrospective analysis of 487 breast cancer patients who underwent mastectomy or breast-conserving surgery and axillary lymph node dissection following neoadjuvant chemotherapy at the Hubei Cancer Hospital between January 1, 2013, and October 1, 2021. The study cohort was divided into internal training and testing datasets in a 70:30 ratio for further analysis. A total of twenty-four variables were included to develop predictive models for rNACT by multiple ML-based algorithms. A feature selection approach was used to identify optimal predictive factors. These models were evaluated by the receiver operating characteristic (ROC) curve for predictive performance.

RESULTS

Analysis identified several significant differences between the rNACT and non-rNACT groups, including total cholesterol, low-density lipoprotein, neutrophil-to-lymphocyte ratio, body mass index, platelet count, albumin-to-globulin ratio, platelet-to-lymphocyte ratio, and lymphocyte-to-monocyte ratio. The areas under the curve of the six models ranged from 0.81 to 0.96. Some ML-based models performed better than models using conventional statistical methods in both ROC curves. The support vector machine (SVM) model with twelve variables introduced was identified as the best predictive model.

CONCLUSION

By incorporating pretreatment serum lipids and serum inflammation markers, it is feasible to develop ML-based models for the preoperative prediction of rNACT and therefore facilitate the choice of treatment, particularly the SVM, which can improve the prediction of rNACT in patients with breast cancer.

摘要

背景

新辅助化疗后达到完全缓解(rNACT)可提高乳腺癌患者的手术效果,然而,未达到rNACT的患者死亡和复发风险更高。

目的

建立基于新型机器学习(ML)的预测模型,以预测拟接受新辅助化疗的乳腺癌患者达到rNACT的概率。

方法

对2013年1月1日至2021年10月1日在湖北省肿瘤医院接受新辅助化疗后行乳房切除术或保乳手术及腋窝淋巴结清扫术的487例乳腺癌患者进行回顾性分析。研究队列按70:30的比例分为内部训练和测试数据集,以进行进一步分析。共纳入24个变量,通过多种基于ML的算法建立rNACT的预测模型。采用特征选择方法识别最佳预测因素。通过受试者操作特征(ROC)曲线评估这些模型的预测性能。

结果

分析确定了rNACT组和未达到rNACT组之间的几个显著差异,包括总胆固醇、低密度脂蛋白、中性粒细胞与淋巴细胞比值、体重指数、血小板计数、白蛋白与球蛋白比值、血小板与淋巴细胞比值以及淋巴细胞与单核细胞比值。六个模型的曲线下面积范围为0.81至0.96。在两条ROC曲线中,一些基于ML的模型比使用传统统计方法的模型表现更好。引入12个变量的支持向量机(SVM)模型被确定为最佳预测模型。

结论

通过纳入治疗前血脂和血清炎症标志物,建立基于ML的模型用于术前预测rNACT是可行的,因此有助于治疗选择,特别是SVM模型,其可改善乳腺癌患者rNACT的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1a5/9048567/90ec6e155178/WJCC-10-3389-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验