Suppr超能文献

使用可解释的监督机器学习预测医疗保健专业人员的倦怠。

Using Explainable Supervised Machine Learning to Predict Burnout in Healthcare Professionals.

机构信息

Carolina Health Informatics Program, University of North Carolina (UNC), Chapel Hill, USA.

Division of Healthcare Engineering, Department of Radiation Oncology, School of Medicine, UNC, Chapel Hill, USA.

出版信息

Stud Health Technol Inform. 2022 May 25;294:58-62. doi: 10.3233/SHTI220396.

Abstract

Burnout in healthcare professionals (HCPs) is a multi-factorial problem. There are limited studies utilizing machine learning approaches to predict HCPs' burnout during the COVID-19 pandemic. A survey consisting of demographic characteristics and work system factors was administered to 450 HCPs during the pandemic (participation rate: 59.3%). The highest performing machine learning model had an area under the receiver operating curve of 0.81. The eight key features that best predicted burnout are excessive workload, inadequate staffing, administrative burden, professional relationships, organizational culture, values and expectations, intrinsic motivation, and work-life integration. These findings provide evidence for resource allocation and implementation of interventions to reduce HCPs' burnout and improve the quality of care.

摘要

医护人员(HCPs)的倦怠是一个多因素问题。利用机器学习方法预测 COVID-19 大流行期间 HCPs 倦怠的研究有限。在大流行期间,对 450 名 HCPs 进行了一项包含人口统计学特征和工作系统因素的调查(参与率:59.3%)。表现最佳的机器学习模型的接收器操作曲线下面积为 0.81。最佳预测倦怠的八个关键特征是工作量过大、人员配备不足、行政负担、职业关系、组织文化、价值观和期望、内在动机以及工作与生活的融合。这些发现为资源分配和实施干预措施提供了证据,以减少 HCPs 的倦怠并提高护理质量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验