Suppr超能文献

基于IGZO TFT的片上可训练电容式突触器件与以保持为中心的Tiki-Taka算法的器件-算法协同优化

Device-Algorithm Co-Optimization for an On-Chip Trainable Capacitor-Based Synaptic Device with IGZO TFT and Retention-Centric Tiki-Taka Algorithm.

作者信息

Won Jongun, Kang Jaehyeon, Hong Sangjun, Han Narae, Kang Minseung, Park Yeaji, Roh Youngchae, Seo Hyeong Jun, Joe Changhoon, Cho Ung, Kang Minil, Um Minseong, Lee Kwang-Hee, Yang Jee-Eun, Jung Moonil, Lee Hyung-Min, Oh Saeroonter, Kim Sangwook, Kim Sangbum

机构信息

Department of Materials Science & Engineering, Inter-university Semiconductor Research Center, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.

Device Solutions, Samsung Electronics, Pyeongtaek, 17786, Republic of Korea.

出版信息

Adv Sci (Weinh). 2023 Oct;10(29):e2303018. doi: 10.1002/advs.202303018. Epub 2023 Aug 9.

Abstract

Analog in-memory computing synaptic devices are widely studied for efficient implementation of deep learning. However, synaptic devices based on resistive memory have difficulties implementing on-chip training due to the lack of means to control the amount of resistance change and large device variations. To overcome these shortcomings, silicon complementary metal-oxide semiconductor (Si-CMOS) and capacitor-based charge storage synapses are proposed, but it is difficult to obtain sufficient retention time due to Si-CMOS leakage currents, resulting in a deterioration of training accuracy. Here, a novel 6T1C synaptic device using only n-type indium gaIlium zinc oxide thin film transistor (IGZO TFT) with low leakage current and a capacitor is proposed, allowing not only linear and symmetric weight update but also sufficient retention time and parallel on-chip training operations. In addition, an efficient and realistic training algorithm to compensate for any remaining device non-idealities such as drifting references and long-term retention loss is proposed, demonstrating the importance of device-algorithm co-optimization.

摘要

模拟内存计算突触器件因能高效实现深度学习而被广泛研究。然而,基于电阻式存储器的突触器件由于缺乏控制电阻变化量的手段以及较大的器件差异,在实现片上训练方面存在困难。为克服这些缺点,人们提出了硅互补金属氧化物半导体(Si-CMOS)和基于电容器的电荷存储突触,但由于Si-CMOS漏电流,难以获得足够的保持时间,导致训练精度下降。在此,提出了一种新型的6T1C突触器件,它仅使用具有低漏电流的n型铟镓锌氧化物薄膜晶体管(IGZO TFT)和一个电容器,不仅允许线性和对称的权重更新,还能实现足够的保持时间以及并行的片上训练操作。此外,还提出了一种高效且现实的训练算法,以补偿诸如漂移参考和长期保持损失等任何剩余的器件非理想特性,证明了器件 - 算法协同优化的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12fc/10582414/883c18daacd6/ADVS-10-2303018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验