Ershadrad Soheil, Ghosh Sukanya, Wang Duo, Kvashnin Yaroslav, Sanyal Biplab
Department of Physics and Astronomy, Uppsala University, Box-516, 75120 Uppsala, Sweden.
J Phys Chem Lett. 2022 Jun 9;13(22):4877-4883. doi: 10.1021/acs.jpclett.2c00692. Epub 2022 May 26.
Recent experiments on FeGeTe suggested the presence of a symmetry breaking of its conventional crystal structure. Here, using density functional theory calculations, we elucidate that the stabilization of the (√3 × √3)30° supercell structure is caused by the swapping of Fe atoms occurring in the monolayer limit. The swapping to the vicinity of Te atoms is facilitated by the spontaneous occurrence of Fe vacancy and its low diffusion barrier. Our calculated magnetic exchange parameters show the simultaneous presence of ferromagnetic and antiferromagnetic exchange among a particular type of Fe atom. The Fe sublattice projected magnetization obtained from Monte Carlo simulations clearly demonstrates an exotic temperature-dependent behavior of this Fe type along with a large canting angle at = 0 K, indicating the presence of a complex noncollinear magnetic order. We propose that the low-temperature crystal structure results from the swapping between two sublattices of Fe, giving rise to peculiar magnetization obtained in experiments.
最近对FeGeTe的实验表明其传统晶体结构存在对称性破缺。在此,我们使用密度泛函理论计算阐明,(√3×√3)30°超晶胞结构的稳定性是由单层极限中发生的Fe原子交换引起的。Fe空位的自发出现及其低扩散势垒促进了Fe原子向Te原子附近的交换。我们计算的磁交换参数表明,在特定类型的Fe原子之间同时存在铁磁和反铁磁交换。从蒙特卡罗模拟获得的Fe子晶格投影磁化强度清楚地表明了这种Fe类型随温度变化的奇异行为,以及在T = 0 K时的大倾斜角,这表明存在复杂的非共线磁序。我们提出,低温晶体结构是由Fe的两个子晶格之间的交换产生的,从而导致了实验中获得的奇特磁化强度。