Suppr超能文献

利用交互式感知构建可供性地图。

Building an Affordances Map With Interactive Perception.

作者信息

Le Goff Léni K, Yaakoubi Oussama, Coninx Alexandre, Doncieux Stéphane

机构信息

Sorbonne Université, CNRS, Institut des Systémes Intelligents et de Robotique, ISIR, Paris, France.

出版信息

Front Neurorobot. 2022 May 10;16:504459. doi: 10.3389/fnbot.2022.504459. eCollection 2022.

Abstract

Robots need to understand their environment to perform their task. If it is possible to pre-program a visual scene analysis process in closed environments, robots operating in an open environment would benefit from the ability to learn it through their interaction with their environment. This ability furthermore opens the way to the acquisition of affordances maps in which the action capabilities of the robot structure its visual scene understanding. We propose an approach to build such affordances maps by relying on an interactive perception approach and an online classification for a real robot equipped with two arms with 7 degrees of freedom. Our system is modular and permits to learn maps from different skills. In the proposed formalization of affordances, actions and effects are related to visual features, not objects, thus our approach does not need a prior definition of the concept of object. We have tested the approach on three action primitives and on a real PR2 robot.

摘要

机器人需要了解其环境才能执行任务。如果在封闭环境中对视觉场景分析过程进行预编程是可行的,那么在开放环境中运行的机器人将受益于通过与环境交互来学习该过程的能力。这种能力还为获取可供性地图开辟了道路,在这种地图中,机器人的动作能力构建了其对视觉场景的理解。我们提出了一种方法,通过依赖交互式感知方法和在线分类,为配备有两个具有7个自由度手臂的真实机器人构建此类可供性地图。我们的系统是模块化的,允许从不同技能中学习地图。在所提出的可供性形式化中,动作和效果与视觉特征相关,而不是与对象相关,因此我们的方法不需要对对象概念进行先验定义。我们已经在三个动作原语和一个真实的PR2机器人上测试了该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2c3/9127723/bafdcd004044/fnbot-16-504459-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验