Woolford Felix M G, Egbert Matthew D
Artificial Life and Minds Lab, School of Computer Science, University of Auckland, Auckland, New Zealand.
Front Neurorobot. 2022 May 10;16:846693. doi: 10.3389/fnbot.2022.846693. eCollection 2022.
We present a description of an ASM-network, a new habit-based robot controller model consisting of a network of adaptive sensorimotor maps. This model draws upon recent theoretical developments in enactive cognition concerning habit and agency at the sensorimotor level. It aims to provide a platform for experimental investigation into the relationship between networked organizations of habits and cognitive behavior. It does this by combining (1) a basic mechanism of generating continuous motor activity as a function of historical sensorimotor trajectories with (2) an evaluative mechanism which reinforces or weakens those historical trajectories as a function of their support of a higher-order structure of higher-order sensorimotor coordinations. After describing the model, we then present the results of applying this model in the context of a well-known minimal cognition task involving object discrimination. In our version of this experiment, an individual robot is able to learn the task through a combination of exploration through random movements and repetition of historic trajectories which support the structure of a pre-given network of sensorimotor coordinations. The experimental results illustrate how, utilizing enactive principles, a robot can display recognizable learning behavior without explicit representational mechanisms or extraneous fitness variables. Instead, our model's behavior adapts according to the internal requirements of the action-generating mechanism itself.
我们描述了一种ASM网络,这是一种基于习惯的新型机器人控制器模型,由自适应感觉运动映射网络组成。该模型借鉴了近期关于感觉运动层面习惯与能动性的具身认知理论发展。其目的是为习惯的网络化组织与认知行为之间的关系提供一个实验研究平台。它通过将(1)一种根据历史感觉运动轨迹生成连续运动活动的基本机制与(2)一种评估机制相结合来实现这一目标,该评估机制根据历史轨迹对高阶感觉运动协调的高阶结构的支持程度来增强或削弱这些轨迹。在描述了该模型之后,我们接着展示了将此模型应用于一个涉及物体辨别著名的最小认知任务的结果。在我们这个版本的实验中,单个机器人能够通过随机运动探索和重复支持预先给定的感觉运动协调网络结构的历史轨迹的组合来学习任务。实验结果说明了利用具身原理,机器人如何能够在没有明确表征机制或外在适应度变量的情况下展现出可识别的学习行为。相反,我们模型的行为根据动作生成机制本身的内部要求进行调整。