Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, 3001, Leuven, Belgium.
Department of Movement Sciences, Human Movement Biomechanics Research Group, KU Leuven, 3001, Leuven, Belgium.
Cell Mol Life Sci. 2022 May 27;79(6):321. doi: 10.1007/s00018-022-04346-7.
Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism.
We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes.
Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model.
Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.
骨骼肌肉(SkM)是机械敏感的,机械卸载会导致肌肉破坏性的状况和代谢特性的改变。然而,这些萎缩状态是否会影响 SkM 机械感受器和分子钟,而这两者对于它们的内稳态和随后的生理代谢都是至关重要的,目前仍不清楚。
我们通过在 10 只雄性 C57BL/6J 小鼠和 10 只对照(CTR)中进行 14 天的后肢悬吊(HS)来诱导 SkM 萎缩。在比目鱼肌和跖肌中检查了机械感受器、分子钟和代谢相关蛋白的肌肉组织学、基因表达和蛋白水平。此外,我们在肌源性 C2C12 细胞中遗传降低了机械感受器整合素连接激酶(Ilk1)和 Fermt2 的表达,并分析了机械感受器、时钟成分和代谢控制基因的基因表达。
在后肢悬吊时,核心分子钟和机械感受器的基因表达水平在比目鱼肌中适度上调,但在跖肌中强烈下调。在卸载时,代谢和蛋白质合成相关基因在比目鱼肌中适度上调,但在跖肌中下调。此外,我们发现机械感受器、代谢和生物钟调节基因之间存在很强的相关性。最后,机械感受器 Ilk1 和 Fermt2 的遗传诱导下调导致 C2C12 模型中的机械感受器、分子钟和代谢相关基因表达下调。
总的来说,这些数据为控制肌肉损失的机制提供了新的认识。机械感受器被确定为这些过程的关键控制因素,特别是通过命令分子钟成分和代谢。