Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Tervuursevest 101, Bus 1500, 3001, Leuven, Belgium.
Cell Mol Life Sci. 2019 Aug;76(15):2987-3004. doi: 10.1007/s00018-019-03026-3. Epub 2019 Jan 30.
Mechanosensors govern muscle tissue integrity and constitute a subcellular structure known as costameres. Costameres physically link the muscle extracellular matrix to contractile and signaling 'hubs' inside muscle fibers mainly via integrins and are localized beneath sarcolemmas of muscle fibers. Costameres are the main mechanosensors converting mechanical cues into biological events. However, the fiber type-specific costamere architecture in muscles is unexplored. We hypothesized that fiber types differ in the expression of genes coding for costamere components. By coupling laser microdissection to a multiplex tandem qPCR approach, we demonstrate that type 1 and type 2 fibers indeed show substantial differences in their mechanosensor complexes. We confirmed these data by fiber type population-specific protein analysis and confocal microscopy-based localization studies. We further show that knockdown of the costamere gene integrin-linked kinase (Ilk) in muscle precursor cells results in significantly increased slow-myosin-coding Myh7 gene, while the fast-myosin-coding genes Myh1, Myh2, and Myh4 are downregulated. In parallel, protein synthesis-enhancing signaling molecules (p-mTOR, p < 0.05; p-P70S6K, tendency with p < 0.1) were reduced upon Ilk knockdown. However, overexpression of slow type-inducing NFATc1 in muscle precursor cells did not change Ilk or other costamere gene expressions. In addition, we demonstrate fiber type-specific costamere gene regulation upon mechanical loading and unloading conditions. Our data imply that costamere genes, such as Ilk, are involved in the control of muscle fiber characteristics. Further, they identify costameres as muscle fiber type-specific loading management 'hubs' and may explain adaptation differences of muscle fiber types to mechanical (un)loading.
机械感受器控制肌肉组织的完整性,并构成一个被称为连接蛋白复合体的亚细胞结构。连接蛋白复合体通过整合素将肌肉细胞外基质与肌肉纤维内的收缩和信号“枢纽”物理连接起来,主要位于肌纤维的肌膜下。连接蛋白复合体是将机械线索转化为生物事件的主要机械感受器。然而,肌肉中纤维类型特异性的连接蛋白复合体结构仍未被探索。我们假设纤维类型在编码连接蛋白复合体成分的基因表达上存在差异。通过将激光微切割与多重串联 qPCR 方法相结合,我们证明 1 型和 2 型纤维在其机械感受器复合物中确实存在显著差异。我们通过纤维类型特异性蛋白分析和基于共聚焦显微镜的定位研究证实了这些数据。我们进一步表明,在肌肉前体细胞中敲低连接蛋白基因整合素连接激酶 (Ilk) 会导致慢肌肌球蛋白编码基因 Myh7 的显著增加,而快肌肌球蛋白编码基因 Myh1、Myh2 和 Myh4 则下调。与此同时,蛋白合成增强信号分子 (p-mTOR,p<0.05;p-P70S6K,有下调趋势,p<0.1) 在 Ilk 敲低后减少。然而,在肌肉前体细胞中过表达诱导慢型的 NFATc1 不会改变 Ilk 或其他连接蛋白基因的表达。此外,我们证明了机械加载和卸载条件下纤维类型特异性连接蛋白基因的调节。我们的数据表明,连接蛋白基因(如 Ilk)参与控制肌肉纤维特征。此外,它们将连接蛋白复合体鉴定为具有纤维类型特异性的加载管理“枢纽”,并可能解释了肌肉纤维类型对机械(卸载)的适应差异。