Rupa Ch, Harshitha M, Srivastava Gautam, Gadekallu Thippa Reddy, Maddikunta Praveen Kumar Reddy
IEEE J Biomed Health Inform. 2023 Mar;27(3):1154-1162. doi: 10.1109/JBHI.2022.3178629. Epub 2023 Mar 7.
Telemedicine and online consultations with doctors has become very popular during the pandemic and involves the transmission of medical data through the internet. Thus this raises concern about the security of the medical data of the patient as the records to contain sensitive and confidential information. A Secure multimedia transformation approach is proposed in this paper using a deep learning-based chaotic logistic map. The proposed work achieves novelty by the integration of a lightweight encryption function using a chaotic logistic map. It also uses the ResNet model to perform classification for identifying the fake medical multimedia data. A linear feedback shift register operations and an interactive user interface facilitate ease of usage to secure the medical multimedia data. The chaotic map provides the security properties such as confusion and diffusion necessary for the encryption ciphers. At the same time, they are highly sensitive to input conditions, thus making the proposed encryption algorithm more secure and robust. The proposed encryption mechanism helps in securing the medical image and video data. On the receiver side, Multilayer perceptions (MLP) of the deep learning approach are used to classify the medical data according to the features required to make other processes. When tested, the proposed work proves efficient in securing medical data against various cyber-attacks and exhibits high entropy levels.
在疫情期间,远程医疗和与医生的在线咨询变得非常流行,这涉及通过互联网传输医疗数据。因此,这引发了对患者医疗数据安全性的担忧,因为这些记录包含敏感和机密信息。本文提出了一种基于深度学习的混沌逻辑映射的安全多媒体转换方法。所提出的工作通过集成使用混沌逻辑映射的轻量级加密函数实现了新颖性。它还使用ResNet模型进行分类,以识别伪造的医疗多媒体数据。线性反馈移位寄存器操作和交互式用户界面便于使用,以保护医疗多媒体数据。混沌映射提供了加密密码所需的混淆和扩散等安全属性。同时,它们对输入条件高度敏感,从而使所提出的加密算法更加安全和稳健。所提出的加密机制有助于保护医学图像和视频数据。在接收端,深度学习方法的多层感知器(MLP)用于根据其他流程所需的特征对医疗数据进行分类。经过测试,所提出的工作在保护医疗数据免受各种网络攻击方面证明是有效的,并呈现出高熵水平。