Kumar Manish, Chivukula Aneesh Sreevallabh, Barua Gunjan
Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, Telangana, India.
Department of Computer Science and Information Systems, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, 500078, India.
Sci Rep. 2025 Jan 7;15(1):1211. doi: 10.1038/s41598-024-84186-6.
The motivation for this article stems from the fact that medical image security is crucial for maintaining patient confidentiality and protecting against unauthorized access or manipulation. This paper presents a novel encryption technique that integrates the Deep Convolutional Generative Adversarial Networks (DCGAN) and Virtual Planet Domain (VPD) approach to enhance the protection of medical images. The method uses a Deep Learning (DL) framework to generate a decoy image, which forms the basis for generating encryption keys using a timestamp, nonce, and 1-D Exponential Chebyshev map (1-DEC). Experimental results validate the efficacy of the approach in safeguarding medical images from various security threats, including unauthorized access, tampering, and adversarial attacks. The randomness of the keys and encrypted images are demonstrated through the National Institute of Standards and Technology (NIST) SP 800-22 Statistical test suite provided in Tables 4 and 14, respectively. The robustness against key sensitivity, noise, cropping attacks, and adversarial attacks are shown in Figs. 15-18, 22-23, and 24. The data presented in Tables 5, 6, and 7 shows the proposed algorithm is robust and efficient in terms of time and key space complexity. Security analysis results are shown (such as histogram plots in Figs. 11-14 and correlation plots in Figs. 19-21). Information Entropy ([Formula: see text]), correlation coefficient ([Formula: see text]), Mean Square Error (MSE) ([Formula: see text]), Peak Signal to Noise Ratio (PSNR) ([Formula: see text]), Number of Pixel Change Rate (NPCR) ([Formula: see text]), and Unified Average Changing Intensity (UACI) ([Formula: see text]) underscore the high security and reliability of the encrypted images, are shown in Tables 8-11. Further, statistical NPCR and UACI are calculated in Tables 12 and 13, respectively. The proposed algorithm is also compared with existing algorithms, and compared values are provided in Table 15. The data presented in Tables 3-15 suggest that the proposed algorithm can opt for practical use.
本文的动机源于医学图像安全对于维护患者隐私以及防范未经授权的访问或篡改至关重要这一事实。本文提出了一种新颖的加密技术,该技术将深度卷积生成对抗网络(DCGAN)和虚拟行星域(VPD)方法相结合,以增强对医学图像的保护。该方法使用深度学习(DL)框架生成诱饵图像,以此作为使用时间戳、一次性数和一维指数切比雪夫映射(1-DEC)生成加密密钥的基础。实验结果验证了该方法在保护医学图像免受各种安全威胁(包括未经授权的访问、篡改和对抗攻击)方面的有效性。密钥和加密图像的随机性分别通过表4和表14中提供的美国国家标准与技术研究院(NIST)SP 800-22统计测试套件得以证明。图15 - 18、22 - 23和24展示了该方法对密钥敏感性、噪声、裁剪攻击和对抗攻击的鲁棒性。表5、6和7中的数据表明,所提出的算法在时间和密钥空间复杂度方面具有鲁棒性和高效性。展示了安全分析结果(如图11 - 14中的直方图和图19 - 21中的相关性图)。信息熵([公式:见原文])、相关系数([公式:见原文])、均方误差(MSE)([公式:见原文])、峰值信噪比(PSNR)([公式:见原文])、像素变化率(NPCR)([公式:见原文])和统一平均变化强度(UACI)([公式:见原文])突出了加密图像的高安全性和可靠性,这些结果列于表8 - 11中。此外,分别在表12和表13中计算了统计NPCR和UACI。所提出的算法还与现有算法进行了比较,比较值列于表15中。表3 - 15中的数据表明,所提出的算法可供实际应用。