Suppr超能文献

室温下通过中子和X射线衍射研究严重急性呼吸综合征冠状病毒2(SARS-CoV-2)非结构蛋白3(NSP3)大结构域的催化和配体结合机制。

The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature.

作者信息

Correy Galen J, Kneller Daniel W, Phillips Gwyndalyn, Pant Swati, Russi Silvia, Cohen Aina E, Meigs George, Holton James M, Gahbauer Stefan, Thompson Michael C, Ashworth Alan, Coates Leighton, Kovalevsky Andrey, Meilleur Flora, Fraser James S

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

出版信息

Sci Adv. 2022 May 27;8(21):eabo5083. doi: 10.1126/sciadv.abo5083.

Abstract

The nonstructural protein 3 (NSP3) macrodomain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Mac1) removes adenosine diphosphate (ADP) ribosylation posttranslational modifications, playing a key role in the immune evasion capabilities of the virus responsible for the coronavirus disease 2019 pandemic. Here, we determined neutron and x-ray crystal structures of the SARS-CoV-2 NSP3 macrodomain using multiple crystal forms, temperatures, and pHs, across the apo and ADP-ribose-bound states. We characterize extensive solvation in the Mac1 active site and visualize how water networks reorganize upon binding of ADP-ribose and non-native ligands, inspiring strategies for displacing waters to increase the potency of Mac1 inhibitors. Determining the precise orientations of active site water molecules and the protonation states of key catalytic site residues by neutron crystallography suggests a catalytic mechanism for coronavirus macrodomains distinct from the substrate-assisted mechanism proposed for human MacroD2. These data provoke a reevaluation of macrodomain catalytic mechanisms and will guide the optimization of Mac1 inhibitors.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的非结构蛋白3(NSP3)的巨结构域(Mac1)可去除翻译后修饰的二磷酸腺苷(ADP)核糖基化,在导致2019年冠状病毒病大流行的病毒免疫逃逸能力中起关键作用。在此,我们利用多种晶体形式、温度和pH值,在无配体和ADP-核糖结合状态下,确定了SARS-CoV-2 NSP3巨结构域的中子和X射线晶体结构。我们对Mac1活性位点的广泛溶剂化进行了表征,并观察了ADP-核糖和非天然配体结合后水网络如何重新组织,从而启发了置换水以提高Mac1抑制剂效力的策略。通过中子晶体学确定活性位点水分子的精确取向和关键催化位点残基的质子化状态,提示了冠状病毒巨结构域不同于人类MacroD2所提出的底物辅助机制的催化机制。这些数据促使人们重新评估巨结构域的催化机制,并将指导Mac1抑制剂的优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27d2/9140965/2294aefaa7a3/sciadv.abo5083-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验