Wright Demelza, Sangtarash Sara, Mueller Niclas S, Lin Qianqi, Sadeghi Hatef, Baumberg Jeremy J
NanoPhotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
Device Modelling Group, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K.
J Phys Chem Lett. 2022 Jun 9;13(22):4905-4911. doi: 10.1021/acs.jpclett.2c01048. Epub 2022 May 27.
Molecules containing vibrational Stark shift reporters provide a useful tool for measuring DC electric fields . To quantify this effect theoretically, density functional theory (DFT) calculations are usually utilized in a uniform electric field. However, using a combined theoretical and experimental study, we demonstrate here that uniform field DFT cannot simultaneously model the behavior of the three strongest vibrational modes in molecules forming a monolayer on an electrode. We show, by directly modeling ionic movement, that the measured Stark shifts are explained by partial electrical double-layer penetration into the molecular layer. This effect is sensitive to the local environment, and the Stark shifts can be fully suppressed experimentally by introducing a mixed molecular layer that prevents ionic double-layer penetration.
含有振动斯塔克位移报告基团的分子为测量直流电场提供了一种有用的工具。为了从理论上量化这种效应,通常在均匀电场中利用密度泛函理论(DFT)计算。然而,通过结合理论和实验研究,我们在此证明均匀场DFT不能同时模拟在电极上形成单层的分子中三种最强振动模式的行为。我们通过直接模拟离子运动表明,测得的斯塔克位移可通过部分双电层渗透到分子层中来解释。这种效应对局部环境敏感,并且通过引入防止离子双电层渗透的混合分子层,斯塔克位移在实验上可以被完全抑制。