Kamp Marlous, de Nijs Bart, Kongsuwan Nuttawut, Saba Matthias, Chikkaraddy Rohit, Readman Charlie A, Deacon William M, Griffiths Jack, Barrow Steven J, Ojambati Oluwafemi S, Wright Demelza, Huang Junyang, Hess Ortwin, Scherman Oren A, Baumberg Jeremy J
NanoPhotonics Centre, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom;
Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14819-14826. doi: 10.1073/pnas.1920091117. Epub 2020 Jun 15.
Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 10 counts⋅mW⋅s and 5 × 10 counts∙mW∙s∙molecule, for enhancement factors >10 We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-µs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) those of luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.
等离子体纳米结构可以将光聚焦到远低于衍射极限的程度,常规获得的近千倍的场增强使得能够检测少数分子和单分子。然而,要以任何相关的时间分辨率跟踪分子尺度上发生的过程,发射强度需要远超过当前等离子体器件所能提供的强度。在这里,我们通过创建与等离子体纳米结融合的SiO纳米球,开发了结合折射光学和等离子体光学的混合纳米结构。拉曼效率始终得到显著提高,对于增强因子>10 ,(单波长)发射达到10计数·毫瓦·秒和5×10计数∙毫瓦∙秒∙分子。我们证明,如此高的效率确实能够以17微秒的时间分辨率跟踪单个金原子和分子,比传统的高性能等离子体器件提高了一千多倍。此外,所获得的(积分)兆赫兹计数率与单染料分子和量子点等发光源的计数率相当(甚至超过),且不会发生漂白或闪烁。