Suppr超能文献

级联纳米光学用于探测微秒级原子尺度现象。

Cascaded nanooptics to probe microsecond atomic-scale phenomena.

作者信息

Kamp Marlous, de Nijs Bart, Kongsuwan Nuttawut, Saba Matthias, Chikkaraddy Rohit, Readman Charlie A, Deacon William M, Griffiths Jack, Barrow Steven J, Ojambati Oluwafemi S, Wright Demelza, Huang Junyang, Hess Ortwin, Scherman Oren A, Baumberg Jeremy J

机构信息

NanoPhotonics Centre, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom;

Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14819-14826. doi: 10.1073/pnas.1920091117. Epub 2020 Jun 15.

Abstract

Plasmonic nanostructures can focus light far below the diffraction limit, and the nearly thousandfold field enhancements obtained routinely enable few- and single-molecule detection. However, for processes happening on the molecular scale to be tracked with any relevant time resolution, the emission strengths need to be well beyond what current plasmonic devices provide. Here, we develop hybrid nanostructures incorporating both refractive and plasmonic optics, by creating SiO nanospheres fused to plasmonic nanojunctions. Drastic improvements in Raman efficiencies are consistently achieved, with (single-wavelength) emissions reaching 10 counts⋅mW⋅s and 5 × 10 counts∙mW∙s∙molecule, for enhancement factors >10 We demonstrate that such high efficiencies indeed enable tracking of single gold atoms and molecules with 17-µs time resolution, more than a thousandfold improvement over conventional high-performance plasmonic devices. Moreover, the obtained (integrated) megahertz count rates rival (even exceed) those of luminescent sources such as single-dye molecules and quantum dots, without bleaching or blinking.

摘要

等离子体纳米结构可以将光聚焦到远低于衍射极限的程度,常规获得的近千倍的场增强使得能够检测少数分子和单分子。然而,要以任何相关的时间分辨率跟踪分子尺度上发生的过程,发射强度需要远超过当前等离子体器件所能提供的强度。在这里,我们通过创建与等离子体纳米结融合的SiO纳米球,开发了结合折射光学和等离子体光学的混合纳米结构。拉曼效率始终得到显著提高,对于增强因子>10 ,(单波长)发射达到10计数·毫瓦·秒和5×10计数∙毫瓦∙秒∙分子。我们证明,如此高的效率确实能够以17微秒的时间分辨率跟踪单个金原子和分子,比传统的高性能等离子体器件提高了一千多倍。此外,所获得的(积分)兆赫兹计数率与单染料分子和量子点等发光源的计数率相当(甚至超过),且不会发生漂白或闪烁。

相似文献

1
Cascaded nanooptics to probe microsecond atomic-scale phenomena.级联纳米光学用于探测微秒级原子尺度现象。
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14819-14826. doi: 10.1073/pnas.1920091117. Epub 2020 Jun 15.
6
Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.等离子体纳米间隙增强拉曼散射与纳米粒子。
Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.
10
Nanooptics of molecular-shunted plasmonic nanojunctions.分子分流等离子体纳米结的纳米光学
Nano Lett. 2015 Jan 14;15(1):669-74. doi: 10.1021/nl5041786. Epub 2014 Dec 16.

引用本文的文献

2
Impact of Surface Enhanced Raman Spectroscopy in Catalysis.表面增强拉曼光谱在催化中的影响。
ACS Nano. 2024 Oct 29;18(43):29337-29379. doi: 10.1021/acsnano.4c06192. Epub 2024 Oct 14.
6
Understanding the Chemical Mechanism behind Photoinduced Enhanced Raman Spectroscopy.理解光诱导增强拉曼光谱背后的化学机理。
J Phys Chem Lett. 2023 May 18;14(19):4607-4616. doi: 10.1021/acs.jpclett.3c00478. Epub 2023 May 11.
7
Plasmonic phenomena in molecular junctions: principles and applications.分子结中的等离子体现象:原理与应用。
Nat Rev Chem. 2022 Oct;6(10):681-704. doi: 10.1038/s41570-022-00423-4. Epub 2022 Sep 20.
9
Fingerprinting the Hidden Facets of Plasmonic Nanocavities.探寻表面等离激元纳米腔的隐藏特性
ACS Photonics. 2022 Aug 17;9(8):2643-2651. doi: 10.1021/acsphotonics.2c00116. Epub 2022 Jul 27.
10
Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.表面增强拉曼散射的分子光力学方法
Acc Chem Res. 2022 Jul 19;55(14):1889-1899. doi: 10.1021/acs.accounts.1c00759. Epub 2022 Jul 1.

本文引用的文献

3
Extreme nanophotonics from ultrathin metallic gaps.基于超薄金属间隙的极端纳米光子学。
Nat Mater. 2019 Jul;18(7):668-678. doi: 10.1038/s41563-019-0290-y. Epub 2019 Apr 1.
5
Room-Temperature Optical Picocavities below 1 nm Accessing Single-Atom Geometries.低于1纳米的室温光学微腔实现单原子几何结构
J Phys Chem Lett. 2018 Dec 20;9(24):7146-7151. doi: 10.1021/acs.jpclett.8b03466. Epub 2018 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验