文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于极端梯度提升算法的住院儿童急性肾损伤预后预测。

Outcome prediction for acute kidney injury among hospitalized children via eXtreme Gradient Boosting algorithm.

机构信息

Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.

Information Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.

出版信息

Sci Rep. 2022 May 27;12(1):8956. doi: 10.1038/s41598-022-13152-x.


DOI:10.1038/s41598-022-13152-x
PMID:35624143
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9142505/
Abstract

Acute kidney injury (AKI) is common among hospitalized children and is associated with a poor prognosis. The study sought to develop machine learning-based models for predicting adverse outcomes among hospitalized AKI children. We performed a retrospective study of hospitalized AKI patients aged 1 month to 18 years in the Second Xiangya Hospital of Central South University in China from 2015 to 2020. The primary outcomes included major adverse kidney events within 30 days (MAKE30) (death, new renal replacement therapy, and persistent renal dysfunction) and 90-day adverse outcomes (chronic dialysis and death). The state-of-the-art machine learning algorithm, eXtreme Gradient Boosting (XGBoost), and the traditional logistic regression were used to establish prediction models for MAKE30 and 90-day adverse outcomes. The models' performance was evaluated by split-set test. A total of 1394 pediatric AKI patients were included in the study. The incidence of MAKE30 and 90-day adverse outcomes was 24.1% and 8.1%, respectively. In the test set, the area under the receiver operating characteristic curve (AUC) of the XGBoost model was 0.810 (95% CI 0.763-0.857) for MAKE30 and 0.851 (95% CI 0.785-0.916) for 90-day adverse outcomes, The AUC of the logistic regression model was 0.786 (95% CI 0.731-0.841) for MAKE30 and 0.759 (95% CI 0.654-0.864) for 90-day adverse outcomes. A web-based risk calculator can facilitate the application of the XGBoost models in daily clinical practice. In conclusion, XGBoost showed good performance in predicting MAKE30 and 90-day adverse outcomes, which provided clinicians with useful tools for prognostic assessment in hospitalized AKI children.

摘要

急性肾损伤(AKI)在住院儿童中很常见,与预后不良有关。本研究旨在建立基于机器学习的模型,以预测住院 AKI 儿童的不良结局。我们对 2015 年至 2020 年期间在中国中南大学湘雅二医院住院的 1 个月至 18 岁 AKI 患儿进行了回顾性研究。主要结局包括 30 天内(MAKE30)的主要不良肾脏事件(死亡、新的肾脏替代治疗和持续的肾功能障碍)和 90 天不良结局(慢性透析和死亡)。使用最先进的机器学习算法,极端梯度提升(XGBoost)和传统的逻辑回归来建立 MAKE30 和 90 天不良结局的预测模型。通过分割测试评估模型的性能。共有 1394 例儿科 AKI 患者纳入研究。MAKE30 和 90 天不良结局的发生率分别为 24.1%和 8.1%。在测试集中,XGBoost 模型的接收器操作特征曲线(AUC)下面积为 0.810(95%置信区间 0.763-0.857),用于 MAKE30,0.851(95%置信区间 0.785-0.916)用于 90 天不良结局,逻辑回归模型的 AUC 为 0.786(95%置信区间 0.731-0.841),用于 MAKE30,0.759(95%置信区间 0.654-0.864)用于 90 天不良结局。一个基于网络的风险计算器可以方便 XGBoost 模型在日常临床实践中的应用。总之,XGBoost 在预测 MAKE30 和 90 天不良结局方面表现良好,为临床医生提供了评估住院 AKI 儿童预后的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/6d54155b5e35/41598_2022_13152_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/b8751a7fbbd9/41598_2022_13152_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/8e7ace121a3d/41598_2022_13152_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/0fb6cacb6ba6/41598_2022_13152_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/9da88472cf92/41598_2022_13152_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/d776578a6272/41598_2022_13152_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/6d54155b5e35/41598_2022_13152_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/b8751a7fbbd9/41598_2022_13152_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/8e7ace121a3d/41598_2022_13152_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/0fb6cacb6ba6/41598_2022_13152_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/9da88472cf92/41598_2022_13152_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/d776578a6272/41598_2022_13152_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27aa/9142505/6d54155b5e35/41598_2022_13152_Fig6_HTML.jpg

相似文献

[1]
Outcome prediction for acute kidney injury among hospitalized children via eXtreme Gradient Boosting algorithm.

Sci Rep. 2022-5-27

[2]
Post-contrast acute kidney injury in a hospitalized population: short-, mid-, and long-term outcome and risk factors for adverse events.

Eur Radiol. 2020-2-21

[3]
[Comparison of machine learning and Logistic regression model in predicting acute kidney injury after cardiac surgery: data analysis based on MIMIC-III database].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022-11

[4]
Association of underweight and obesity with adverse postoperative renal outcomes in infants and young children undergoing congenital heart surgery.

Eur J Pediatr. 2023-8

[5]
Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.

J Med Internet Res. 2023-1-5

[6]
Urine Neutrophil Gelatinase-associated Lipocalin (NGAL) for Prediction of Persistent AKI and Major Adverse Kidney Events.

Sci Rep. 2020-5-26

[7]
Utilization of interpretable machine learning model to forecast the risk of major adverse kidney events in elderly patients in critical care.

Ren Fail. 2023-12

[8]
[Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].

Zhonghua Shao Shang Za Zhi. 2018-6-20

[9]
A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.

BMC Geriatr. 2024-6-25

[10]
Construction and validation of an early warning model for predicting the acute kidney injury in elderly patients with sepsis.

Aging Clin Exp Res. 2022-12

引用本文的文献

[1]
Diagnostic Stewardship of Blood Cultures in the Pediatric ICU Using Machine Learning.

Hosp Pediatr. 2025-6-1

[2]
Prediction Model for Risk of Death in Elderly Critically Ill Patients with Kidney Failure.

Medicina (Kaunas). 2025-4-1

[3]
Use of CatBoost algorithm to identify the need for surgery in infants with necrotizing enterocolitis.

Front Pediatr. 2025-2-21

[4]
Artificial intelligence and pediatric acute kidney injury: a mini-review and white paper.

Front Nephrol. 2025-2-18

[5]
The development and validation of a prediction model for post-AKI outcomes of pediatric inpatients.

Clin Kidney J. 2025-1-9

[6]
Major Adverse Kidney Events in Hospitalized Older Patients With Acute Kidney Injury: Machine Learning-Based Model Development and Validation Study.

J Med Internet Res. 2025-1-3

[7]
Research hotspots and frontiers of machine learning in renal medicine: a bibliometric and visual analysis from 2013 to 2024.

Int Urol Nephrol. 2025-3

[8]
Development of a diagnostic model for biliary atresia based on MMP7 and serological tests using machine learning.

Pediatr Surg Int. 2024-7-19

[9]
Heterogeneity in the definition of major adverse kidney events: a scoping review.

Intensive Care Med. 2024-7

[10]
Forecasting acute kidney injury and resource utilization in ICU patients using longitudinal, multimodal models.

J Biomed Inform. 2024-6

本文引用的文献

[1]
Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis.

Sci Rep. 2021-10-12

[2]
Early Prediction of Multiple Organ Dysfunction in the Pediatric Intensive Care Unit.

Front Pediatr. 2021-8-16

[3]
Acute kidney disease in hospitalized acute kidney injury patients.

PeerJ. 2021-5-24

[4]
Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost.

J Transl Med. 2020-12-7

[5]
Community-Based Epidemiology of Hospitalized Acute Kidney Injury.

Pediatrics. 2020-8-11

[6]
Machine Learning Model for Risk Prediction of Community-Acquired Acute Kidney Injury Hospitalization From Electronic Health Records: Development and Validation Study.

J Med Internet Res. 2020-8-4

[7]
Prediction of the development of acute kidney injury following cardiac surgery by machine learning.

Crit Care. 2020-7-31

[8]
A Time-Updated, Parsimonious Model to Predict AKI in Hospitalized Children.

J Am Soc Nephrol. 2020-6

[9]
Fluid Accumulation in Critically Ill Children.

Crit Care Med. 2020-7

[10]
Post-contrast acute kidney injury in a hospitalized population: short-, mid-, and long-term outcome and risk factors for adverse events.

Eur Radiol. 2020-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索