Suppr超能文献

使用卷积神经网络在T1加权磁共振成像上自动检测脑转移瘤:体积感知损失和采样策略的影响

Automated Detection of Brain Metastases on T1-Weighted MRI Using a Convolutional Neural Network: Impact of Volume Aware Loss and Sampling Strategy.

作者信息

Chartrand Gabriel, Emiliani Ramón D, Pawlowski Sophie A, Markel Daniel A, Bahig Houda, Cengarle-Samak Alexandre, Rajakesari Selvan, Lavoie Jeremi, Ducharme Simon, Roberge David

机构信息

AFX Medical Inc., Montréal, Canada.

Department of Radiation Oncology, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.

出版信息

J Magn Reson Imaging. 2022 Dec;56(6):1885-1898. doi: 10.1002/jmri.28274. Epub 2022 May 27.

Abstract

BACKGROUND

Detection of brain metastases (BM) and segmentation for treatment planning could be optimized with machine learning methods. Convolutional neural networks (CNNs) are promising, but their trade-offs between sensitivity and precision frequently lead to missing small lesions.

HYPOTHESIS

Combining volume aware (VA) loss function and sampling strategy could improve BM detection sensitivity.

STUDY TYPE

Retrospective.

POPULATION

A total of 530 radiation oncology patients (55% women) were split into a training/validation set (433 patients/1460 BM) and an independent test set (97 patients/296 BM).

FIELD STRENGTH/SEQUENCE: 1.5 T and 3 T, contrast-enhanced three-dimensional (3D) T1-weighted fast gradient echo sequences.

ASSESSMENT

Ground truth masks were based on radiotherapy treatment planning contours reviewed by experts. A U-Net inspired model was trained. Three loss functions (Dice, Dice + boundary, and VA) and two sampling methods (label and VA) were compared. Results were reported with Dice scores, volumetric error, lesion detection sensitivity, and precision. A detected voxel within the ground truth constituted a true positive.

STATISTICAL TESTS

McNemar's exact test to compare detected lesions between models. Pearson's correlation coefficient and Bland-Altman analysis to compare volume agreement between predicted and ground truth volumes. Statistical significance was set at P ≤ 0.05.

RESULTS

Combining VA loss and VA sampling performed best with an overall sensitivity of 91% and precision of 81%. For BM in the 2.5-6 mm estimated sphere diameter range, VA loss reduced false negatives by 58% and VA sampling reduced it further by 30%. In the same range, the boundary loss achieved the highest precision at 81%, but a low sensitivity (24%) and a 31% Dice loss.

DATA CONCLUSION

Considering BM size in the loss and sampling function of CNN may increase the detection sensitivity regarding small BM. Our pipeline relying on a single contrast-enhanced T1-weighted MRI sequence could reach a detection sensitivity of 91%, with an average of only 0.66 false positives per scan.

EVIDENCE LEVEL

3 TECHNICAL EFFICACY: Stage 2.

摘要

背景

利用机器学习方法可优化脑转移瘤(BM)的检测及用于治疗规划的分割。卷积神经网络(CNN)很有前景,但其在敏感性和精确性之间的权衡常常导致小病灶漏检。

假设

结合体积感知(VA)损失函数和采样策略可提高BM检测的敏感性。

研究类型

回顾性研究。

研究对象

共530例放射肿瘤学患者(55%为女性)被分为训练/验证集(433例患者/1460个BM)和独立测试集(97例患者/296个BM)。

场强/序列:1.5T和3T,对比增强三维(3D)T1加权快速梯度回波序列。

评估

真实掩膜基于专家审核的放射治疗规划轮廓。训练了一个受U-Net启发的模型。比较了三种损失函数(骰子损失、骰子损失+边界损失和VA损失)和两种采样方法(标签采样和VA采样)。结果以骰子分数、体积误差、病灶检测敏感性和精确性报告。真实掩膜内检测到的体素构成真阳性。

统计检验

采用McNemar精确检验比较模型间检测到的病灶。采用Pearson相关系数和Bland-Altman分析比较预测体积与真实体积之间的体积一致性。统计学显著性设定为P≤0.05。

结果

结合VA损失和VA采样表现最佳,总体敏感性为91%,精确性为81%。对于估计球体直径在2.5 - 6mm范围内的BM,VA损失使假阴性减少58%,VA采样进一步减少30%。在同一范围内,边界损失达到最高精确性81%,但敏感性较低(24%),骰子损失为31%。

数据结论

在CNN的损失和采样函数中考虑BM大小可能会提高对小BM的检测敏感性。我们基于单一对比增强T1加权MRI序列的流程可达到91%的检测敏感性,每次扫描平均仅有0.66个假阳性。

证据水平

3 技术效能:2级

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验