Hodneland Erlend, Kaliyugarasan Satheshkumar, Wagner-Larsen Kari Strøno, Lura Njål, Andersen Erling, Bartsch Hauke, Smit Noeska, Halle Mari Kyllesø, Krakstad Camilla, Lundervold Alexander Selvikvåg, Haldorsen Ingfrid Salvesen
Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5009 Bergen, Norway.
Department of Mathematics, University of Bergen, 5020 Bergen, Norway.
Cancers (Basel). 2022 May 11;14(10):2372. doi: 10.3390/cancers14102372.
Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide. Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for tailoring treatment in CC. However, radiomic profiling relies on manual tumor segmentation which is unfeasible in the clinic. We present a fully automatic method for the 3D segmentation of primary CC lesions using state-of-the-art deep learning (DL) techniques. In 131 CC patients, the primary tumor was manually segmented on T2-weighted MRI by two radiologists (R1, R2). Patients were separated into a train/validation ( = 105) and a test- ( = 26) cohort. The segmentation performance of the DL algorithm compared with R1/R2 was assessed with Dice coefficients (DSCs) and Hausdorff distances (HDs) in the test cohort. The trained DL network retrieved whole-volume tumor segmentations yielding median DSCs of 0.60 and 0.58 for DL compared with R1 (DL-R1) and R2 (DL-R2), respectively, whereas DSC for R1-R2 was 0.78. Agreement for primary tumor volumes was excellent between raters (R1-R2: intraclass correlation coefficient (ICC) = 0.93), but lower for the DL algorithm and the raters (DL-R1: ICC = 0.43; DL-R2: ICC = 0.44). The developed DL algorithm enables the automated estimation of tumor size and primary CC tumor segmentation. However, segmentation agreement between raters is better than that between DL algorithm and raters.
子宫颈癌(CC)是全球最常见的妇科恶性肿瘤。盆腔MRI的全容积影像组学分析可为CC的个体化治疗提供预后标志物。然而,影像组学分析依赖于手动肿瘤分割,这在临床上是不可行的。我们提出了一种使用先进深度学习(DL)技术对原发性CC病变进行三维分割的全自动方法。在131例CC患者中,两名放射科医生(R1、R2)在T2加权MRI上对原发性肿瘤进行了手动分割。患者被分为训练/验证组(n = 105)和测试组(n = 26)。在测试组中,使用Dice系数(DSC)和豪斯多夫距离(HD)评估DL算法与R1/R2相比的分割性能。训练后的DL网络获取了全容积肿瘤分割结果,与R1(DL-R1)和R2(DL-R2)相比,DL的DSC中位数分别为0.60和0.58,而R1-R2的DSC为0.78。评估者之间原发性肿瘤体积的一致性非常好(R1-R2:组内相关系数(ICC)= 0.93),但DL算法与评估者之间的一致性较低(DL-R1:ICC = 0.43;DL-R2:ICC = 0.44)。所开发的DL算法能够自动估计肿瘤大小并进行原发性CC肿瘤分割。然而,评估者之间的分割一致性优于DL算法与评估者之间的一致性。