Suppr超能文献

多元高斯Copula互信息用于以较少随机架构估计功能连接性。

Multivariate Gaussian Copula Mutual Information to Estimate Functional Connectivity with Less Random Architecture.

作者信息

Ashrafi Mahnaz, Soltanian-Zadeh Hamid

机构信息

Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran 1439957131, Iran.

出版信息

Entropy (Basel). 2022 Apr 29;24(5):631. doi: 10.3390/e24050631.

Abstract

Recognition of a brain region's interaction is an important field in neuroscience. Most studies use the Pearson correlation to find the interaction between the regions. According to the experimental evidence, there is a nonlinear dependence between the activities of different brain regions that is ignored by Pearson correlation as a linear measure. Typically, the average activity of each region is used as input because it is a univariate measure. This dimensional reduction, i.e., averaging, leads to a loss of spatial information across voxels within the region. In this study, we propose using an information-theoretic measure, multivariate mutual information (mvMI), as a nonlinear dependence to find the interaction between regions. This measure, which has been recently proposed, simplifies the mutual information calculation complexity using the Gaussian copula. Using simulated data, we show that the using this measure overcomes the mentioned limitations. Additionally using the real resting-state fMRI data, we compare the level of significance and randomness of graphs constructed using different methods. Our results indicate that the proposed method estimates the functional connectivity more significantly and leads to a smaller number of random connections than the common measure, Pearson correlation. Moreover, we find that the similarity of the estimated functional networks of the individuals is higher when the proposed method is used.

摘要

识别大脑区域的相互作用是神经科学中的一个重要领域。大多数研究使用皮尔逊相关性来寻找区域之间的相互作用。根据实验证据,不同大脑区域的活动之间存在非线性依赖关系,而皮尔逊相关性作为一种线性度量忽略了这种关系。通常,每个区域的平均活动被用作输入,因为它是一种单变量度量。这种降维,即平均,导致区域内体素间空间信息的丢失。在本研究中,我们提出使用一种信息论度量,多变量互信息(mvMI),作为一种非线性依赖关系来寻找区域之间的相互作用。这种最近提出的度量使用高斯耦合简化了互信息计算的复杂性。使用模拟数据,我们表明使用这种度量克服了上述局限性。此外,使用真实的静息态功能磁共振成像数据,我们比较了使用不同方法构建的图形的显著性水平和随机性。我们的结果表明,与常用的度量皮尔逊相关性相比,所提出的方法更显著地估计功能连接性,并导致随机连接的数量更少。此外,我们发现当使用所提出的方法时,个体估计的功能网络的相似性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd4d/9141633/5930495756b0/entropy-24-00631-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验