Suppr超能文献

在基于脑电图进行阿尔茨海默病检测的背景下,用于脑网络分析的功能连接测量方法的比较研究。

A Comparative Study of Functional Connectivity Measures for Brain Network Analysis in the Context of AD Detection with EEG.

作者信息

Abazid Majd, Houmani Nesma, Boudy Jerome, Dorizzi Bernadette, Mariani Jean, Kinugawa Kiyoka

机构信息

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, 9 Rue Charles Fourier, F-91011 Évry, France.

Sorbonne Université, CNRS, UMR 8256 Biological Adaptation and Aging, F-75005 Paris, France.

出版信息

Entropy (Basel). 2021 Nov 22;23(11):1553. doi: 10.3390/e23111553.

Abstract

This work addresses brain network analysis considering different clinical severity stages of cognitive dysfunction, based on resting-state electroencephalography (EEG). We use a cohort acquired in real-life clinical conditions, which contains EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, and Alzheimer's disease (AD) patients. We propose to exploit an epoch-based entropy measure to quantify the connectivity links in the networks. This entropy measure relies on a refined statistical modeling of EEG signals with Hidden Markov Models, which allow a better estimation of the spatiotemporal characteristics of EEG signals. We also propose to conduct a comparative study by considering three other measures largely used in the literature: phase lag index, coherence, and mutual information. We calculated such measures at different frequency bands and computed different local graph parameters considering different proportional threshold values for a binary network analysis. After applying a feature selection procedure to determine the most relevant features for classification performance with a linear Support Vector Machine algorithm, our study demonstrates the effectiveness of the statistical entropy measure for analyzing the brain network in patients with different stages of cognitive dysfunction.

摘要

这项工作基于静息态脑电图(EEG),针对认知功能障碍的不同临床严重程度阶段进行脑网络分析。我们使用在实际临床条件下获取的一个队列,其中包含主观认知障碍(SCI)患者、轻度认知障碍(MCI)患者和阿尔茨海默病(AD)患者的EEG数据。我们提议利用基于时段的熵测度来量化网络中的连接关系。这种熵测度依赖于用隐马尔可夫模型对EEG信号进行精细的统计建模,这能更好地估计EEG信号的时空特征。我们还提议通过考虑文献中大量使用的其他三种测度进行比较研究:相位滞后指数、相干性和互信息。我们在不同频段计算这些测度,并针对二元网络分析考虑不同比例阈值计算不同的局部图参数。在用线性支持向量机算法应用特征选择程序以确定对分类性能最相关的特征后,我们的研究证明了统计熵测度在分析不同认知功能障碍阶段患者脑网络方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/8623641/dc18335593be/entropy-23-01553-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验