Suppr超能文献

AUTO-HAR:一种使用自动化卷积神经网络(CNN)架构设计的自适应人类活动识别框架。

AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design.

作者信息

Ismail Walaa N, Alsalamah Hessah A, Hassan Mohammad Mehedi, Mohamed Ebtesam

机构信息

Department of Management Information Systems, College of Business Administration, Al Yamamah University, 11512, Riyadh, Saudi Arabia.

Faculty of Computers and Information, Minia University, 61519, Minia, Egypt.

出版信息

Heliyon. 2023 Feb 13;9(2):e13636. doi: 10.1016/j.heliyon.2023.e13636. eCollection 2023 Feb.

Abstract

Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of time- series data when used for Human Activity Recognition (HAR). The manual design of such neural architectures is an error-prone and time-consuming process. The search for optimal CNN architectures is considered a revolution in the design of neural networks. By means of Neural Architecture Search (NAS), network architectures can be designed and optimized automatically. Thus, the optimal CNN architecture representation can be found automatically because of its ability to overcome the limitations of human experience and thinking modes. Evolution algorithms, which are derived from evolutionary mechanisms such as natural selection and genetics, have been widely employed to develop and optimize NAS because they can handle a blackbox optimization process for designing appropriate solution representations and search paradigms without explicit mathematical formulations or gradient information. The Genetic optimization algorithm (GA) is widely used to find optimal or near-optimal solutions for difficult problems. Considering these characteristics, an efficient human activity recognition architecture (AUTO-HAR) is presented in this study. Using the evolutionary GA to select the optimal CNN architecture, the current study proposes a novel encoding schema structure and a novel search space with a much broader range of operations to effectively search for the best architectures for HAR tasks. In addition, the proposed search space provides a reasonable degree of depth because it does not limit the maximum length of the devised task architecture. To test the effectiveness of the proposed framework for HAR tasks, three datasets were utilized: UCI-HAR, Opportunity, and DAPHNET. Based on the results of this study, it has been found that the proposed method can efficiently recognize human activity with an average accuracy of 98.5% (∓1.1), 98.3%, and 99.14% (∓0.8) for UCI-HAR, Opportunity, and DAPHNET, respectively.

摘要

卷积神经网络(CNN)在用于人类活动识别(HAR)的时间序列数据分析中已展现出卓越的成果。此类神经架构的手动设计是一个容易出错且耗时的过程。寻找最优的CNN架构被视为神经网络设计领域的一次变革。借助神经架构搜索(NAS),可以自动设计和优化网络架构。因此,由于其能够克服人类经验和思维模式的局限性,最优的CNN架构表示能够被自动找到。源自自然选择和遗传学等进化机制的进化算法已被广泛用于开发和优化NAS,因为它们能够处理用于设计合适的解决方案表示和搜索范式的黑箱优化过程,而无需明确的数学公式或梯度信息。遗传优化算法(GA)被广泛用于为难题寻找最优或接近最优的解决方案。考虑到这些特性,本研究提出了一种高效的人类活动识别架构(AUTO - HAR)。利用进化GA来选择最优的CNN架构,当前研究提出了一种新颖的编码模式结构和一个具有更广泛操作范围的新颖搜索空间,以有效地搜索用于HAR任务的最佳架构。此外,所提出的搜索空间提供了合理的深度,因为它不限制所设计任务架构的最大长度。为了测试所提出框架对HAR任务的有效性,使用了三个数据集:UCI - HAR、Opportunity和DAPHNET。基于本研究的结果,已发现所提出的方法能够分别以98.5%(±1.1)、98.3%和99.14%(±0.8)的平均准确率高效地识别UCI - HAR、Opportunity和DAPHNET数据集上的人类活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a2c/9958436/9c93b7ca27cf/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验