Saunoriene Loreta, Jablonskaite Kamilija, Ragulskiene Jurate, Ragulskis Minvydas
Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania.
Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania.
Entropy (Basel). 2022 May 12;24(5):684. doi: 10.3390/e24050684.
A computational technique for the determination of optimal hiding conditions of a digital image in a self-organizing pattern is presented in this paper. Three statistical features of the developing pattern (the Wada index based on the weighted and truncated Shannon entropy, the mean of the brightness of the pattern, and the -value of the Kolmogorov-Smirnov criterion for the normality testing of the distribution function) are used for that purpose. The transition from the small-scale chaos of the initial conditions to the large-scale chaos of the developed pattern is observed during the evolution of the self-organizing system. Computational experiments are performed with the stripe-type patterns, spot-type patterns, and unstable patterns. It appears that optimal image hiding conditions are secured when the Wada index stabilizes after the initial decline, the mean of the brightness of the pattern remains stable before dropping down significantly below the average, and the -value indicates that the distribution becomes Gaussian.
本文提出了一种用于确定数字图像在自组织模式下最优隐藏条件的计算技术。为此目的,使用了发展模式的三个统计特征(基于加权和截断香农熵的和田指数、模式亮度的均值以及用于分布函数正态性检验的柯尔莫哥洛夫 - 斯米尔诺夫准则的 值)。在自组织系统的演化过程中,观察到从初始条件的小尺度混沌到发展模式的大尺度混沌的转变。对条纹型模式、斑点型模式和不稳定模式进行了计算实验。当和田指数在初始下降后稳定下来、模式亮度的均值在显著下降到平均值以下之前保持稳定且 值表明分布变为高斯分布时,似乎可以确保获得最优的图像隐藏条件。