Suppr超能文献

一种用于睡眠阶段分类的注意力引导时空图卷积网络。

An Attention-Guided Spatiotemporal Graph Convolutional Network for Sleep Stage Classification.

作者信息

Li Menglei, Chen Hongbo, Cheng Zixue

机构信息

Graduate School of Computer Science and Engineering, The University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu City 965-8580, Fukushima, Japan.

School of Computer Science and Engineering, The University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu City 965-8580, Fukushima, Japan.

出版信息

Life (Basel). 2022 Apr 21;12(5):622. doi: 10.3390/life12050622.

Abstract

Sleep staging has been widely used as an approach in sleep diagnoses at sleep clinics. Graph neural network (GNN)-based methods have been extensively applied for automatic sleep stage classifications with significant results. However, the existing GNN-based methods rely on a static adjacency matrix to capture the features of the different electroencephalogram (EEG) channels, which cannot grasp the information of each electrode. Meanwhile, these methods ignore the importance of spatiotemporal relations in classifying sleep stages. In this work, we propose a combination of a dynamic and static spatiotemporal graph convolutional network (ST-GCN) with inter-temporal attention blocks to overcome two shortcomings. The proposed method consists of a GCN with a CNN that takes into account the intra-frame dependency of each electrode in the brain region to extract spatial and temporal features separately. In addition, the attention block was used to capture the long-range dependencies between the different electrodes in the brain region, which helps the model to classify the dynamics of each sleep stage more accurately. In our experiments, we used the sleep-EDF and the subgroup III of the ISRUC-SLEEP dataset to compare with the most current methods. The results show that our method performs better in accuracy from 4.6% to 5.3%, in Kappa from 0.06 to 0.07, and in macro-F score from 4.9% to 5.7%. The proposed method has the potential to be an effective tool for improving sleep disorders.

摘要

睡眠分期作为一种方法已在睡眠诊所的睡眠诊断中广泛应用。基于图神经网络(GNN)的方法已被广泛应用于自动睡眠阶段分类,并取得了显著成果。然而,现有的基于GNN的方法依赖于静态邻接矩阵来捕捉不同脑电图(EEG)通道的特征,无法掌握每个电极的信息。同时,这些方法在睡眠阶段分类中忽略了时空关系的重要性。在这项工作中,我们提出了一种动态和静态时空图卷积网络(ST-GCN)与跨时间注意力块的组合,以克服这两个缺点。所提出的方法由一个带有卷积神经网络(CNN)的图卷积网络(GCN)组成,该网络考虑了大脑区域中每个电极的帧内依赖性,以分别提取空间和时间特征。此外,注意力块用于捕捉大脑区域中不同电极之间的长程依赖性,这有助于模型更准确地对每个睡眠阶段的动态进行分类。在我们的实验中,我们使用了睡眠-EDF和ISRUC-SLEEP数据集的第三子组与当前最新方法进行比较。结果表明,我们的方法在准确率上提高了4.6%至5.3%,在卡帕系数上提高了0.06至0.07,在宏F分数上提高了4.9%至5.7%。所提出的方法有潜力成为改善睡眠障碍的有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验