Suppr超能文献

使用超高效液相色谱-质谱联用技术对乳腺癌患者血浆进行代谢组学分析:一项非靶向研究

Metabolomic Analysis of Plasma from Breast Cancer Patients Using Ultra-High-Performance Liquid Chromatography Coupled with Mass Spectrometry: An Untargeted Study.

作者信息

Da Cunha Patricia A, Nitusca Diana, Canto Luisa Matos Do, Varghese Rency S, Ressom Habtom W, Willey Shawna, Marian Catalin, Haddad Bassem R

机构信息

Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, USA.

Department of Biochemistry and Pharmacology, Victor Babeş University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania.

出版信息

Metabolites. 2022 May 17;12(5):447. doi: 10.3390/metabo12050447.

Abstract

Breast cancer (BC) is one of the leading causes of cancer mortality in women worldwide, and therefore, novel biomarkers for early disease detection are critically needed. We performed herein an untargeted plasma metabolomic profiling of 55 BC patients and 55 healthy controls (HC) using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). Pre-processed data revealed 2494 ions in total. Data matrices’ paired t-tests revealed 792 ions (both positive and negative) which presented statistically significant changes (FDR < 0.05) in intensity levels between cases versus controls. Metabolites identified with putative names via MetaboQuest using MS/MS and mass-based approaches included amino acid esters (i.e., N-stearoyl tryptophan, L-arginine ethyl ester), dipeptides (ile-ser, met-his), nitrogenous bases (i.e., uracil derivatives), lipid metabolism-derived molecules (caproleic acid), and exogenous compounds from plants, drugs, or dietary supplements. LASSO regression selected 16 metabolites after several variables (TNM Stage, Grade, smoking status, menopausal status, and race) were adjusted. A predictive conditional logistic regression model on the 16 LASSO selected ions provided a high diagnostic performance with an area-under-the-curve (AUC) value of 0.9729 (95% CI 0.96−0.98) on all 55 samples. This study proves that BC possesses a specific metabolic signature that could be exploited as a novel metabolomics-based approach for BC detection and characterization. Future studies of large-scale cohorts are needed to validate these findings.

摘要

乳腺癌(BC)是全球女性癌症死亡的主要原因之一,因此,迫切需要用于早期疾病检测的新型生物标志物。我们在此使用超高效液相色谱与四极杆飞行时间质谱联用技术(UHPLC/Q-TOF-MS),对55例乳腺癌患者和55例健康对照(HC)进行了非靶向血浆代谢组学分析。预处理后的数据总共显示出2494个离子。数据矩阵的配对t检验显示,792个离子(包括正离子和负离子)在病例组与对照组之间的强度水平上呈现出具有统计学意义的变化(FDR<0.05)。通过MetaboQuest使用MS/MS和基于质量的方法鉴定出的推定名称的代谢物包括氨基酸酯(即N-硬脂酰色氨酸、L-精氨酸乙酯)、二肽(异亮氨酸-丝氨酸、蛋氨酸-组氨酸)、含氮碱基(即尿嘧啶衍生物)、脂质代谢衍生分子(己酸)以及来自植物、药物或膳食补充剂的外源性化合物。在对几个变量(TNM分期、分级、吸烟状况、绝经状态和种族)进行调整后,LASSO回归选择了16种代谢物。对16种LASSO选择的离子建立的预测性条件逻辑回归模型在所有55个样本上具有较高的诊断性能,曲线下面积(AUC)值为0.9729(95%CI 0.96−0.98)。本研究证明,乳腺癌具有特定的代谢特征,可作为一种基于代谢组学的新型方法用于乳腺癌的检测和特征分析。需要对大规模队列进行进一步研究以验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd65/9147455/c759de05ead4/metabolites-12-00447-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验