Suppr超能文献

细胞代谢重编程的机器学习

Machine learning of cellular metabolic rewiring.

作者信息

Xavier Joao B

机构信息

Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Biol Methods Protoc. 2024 Jul 2;9(1):bpae048. doi: 10.1093/biomethods/bpae048. eCollection 2024.

Abstract

Metabolic rewiring allows cells to adapt their metabolism in response to evolving environmental conditions. Traditional metabolomics techniques, whether targeted or untargeted, often struggle to interpret these adaptive shifts. Here, we introduce , a lightweight machine learning framework that harnesses the detailed fragmentation patterns from electron ionization (EI) collected in scan mode during gas chromatography/mass spectrometry to predict changes in the metabolite composition of metabolically adapted cells. When tested on breast cancer cells with different preferences to metastasize to specific organs, predicted the impact of metabolic rewiring on metabolites withheld from the training dataset using only the EI spectra, without metabolite identification or pre-existing knowledge of metabolic networks. Despite its simplicity, the model learned captured shared and unique metabolomic shifts between brain- and lung-homing metastatic lineages, suggesting cellular adaptations associated with metastasis to specific organs. Integrating machine learning and metabolomics paves the way for new insights into complex cellular adaptations.

摘要

代谢重编程使细胞能够根据不断变化的环境条件调整其代谢。传统的代谢组学技术,无论是靶向的还是非靶向的,往往难以解释这些适应性变化。在此,我们引入了一个轻量级的机器学习框架,该框架利用气相色谱/质谱分析过程中扫描模式下收集的电子电离(EI)产生的详细碎片模式,来预测代谢适应细胞代谢物组成的变化。在用对转移至特定器官有不同偏好的乳腺癌细胞进行测试时,该框架仅使用EI光谱就预测了代谢重编程对训练数据集中未包含的代谢物的影响,而无需进行代谢物鉴定或预先具备代谢网络知识。尽管该模型很简单,但它所学到的内容捕捉到了脑转移和肺转移谱系之间共享的和独特的代谢组学变化,表明了与转移至特定器官相关的细胞适应性。将机器学习与代谢组学相结合为深入了解复杂的细胞适应性开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b52d/11249387/a4ee209542d4/bpae048f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验