Rodrigues Murillo Henrique de Matos, Souza Junior Joao Batista, Leite Edson R
Department of Chemistry, Federal University of São Carlos, Via Washington Luiz, km 235, São Carlos 13565-905, SP, Brazil.
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil.
Nanomaterials (Basel). 2022 May 11;12(10):1636. doi: 10.3390/nano12101636.
Hematite is considered a promising photoanode material for photoelectrochemical water splitting, and the literature has shown that the photoanode production process has an impact on the final efficiency of hydrogen generation. Among the methods used to process hematite photoanode, we can highlight the thin films from the colloidal deposition process of magnetic nanoparticles. This technique leads to the production of high-performance hematite photoanode. However, little is known about the influence of the magnetic field and heat treatment parameters on the final properties of hematite photoanodes. Here, we will evaluate those processing parameters in the morphology and photoelectrochemical properties of nanostructured hematite anodes. The analysis of thickness demonstrated a relationship between the magnetic field and nanoparticles concentration utilized to prepare the thin films, showing that the higher magnetic fields decrease the thickness. The results corroborate to influence the magnetic field since the use of a higher magnetic field decreases the deposited material amount, consequently decreasing the absorption of the thin films. The PEC measurements showed that at higher concentrations, the use of higher magnetic fields increases the values, and lower magnetic fields cause a decrease in when using the higher nanoparticle concentrations.
赤铁矿被认为是一种用于光电化学水分解的很有前景的光阳极材料,并且文献表明光阳极的制备过程会对最终的产氢效率产生影响。在用于处理赤铁矿光阳极的方法中,我们可以突出通过磁性纳米颗粒的胶体沉积过程制备的薄膜。该技术能够生产出高性能的赤铁矿光阳极。然而,关于磁场和热处理参数对赤铁矿光阳极最终性能的影响却知之甚少。在此,我们将评估这些处理参数对纳米结构赤铁矿阳极的形态和光电化学性质的影响。厚度分析表明了用于制备薄膜的磁场与纳米颗粒浓度之间的关系,显示出较高的磁场会降低厚度。这些结果证实了磁场的影响,因为使用更高的磁场会减少沉积材料的量,从而降低薄膜的吸收率。光电化学测量表明,在较高浓度下,使用更高的磁场会增加 值,而在使用较高纳米颗粒浓度时,较低的磁场会导致 值降低。