Suppr超能文献

利用硼掺杂金刚石电极特性的高密度单分散电化学金纳米粒子合成

High-Density and Monodisperse Electrochemical Gold Nanoparticle Synthesis Utilizing the Properties of Boron-Doped Diamond Electrodes.

作者信息

Takemura Kenshin, Iwasaki Wataru, Morita Nobutomo, Ohmagari Shinya

机构信息

Sensing System Research Center, The National Institute of Advanced Industrial Science and Technology (AIST), Tosu 841-0052, Japan.

出版信息

Nanomaterials (Basel). 2022 May 19;12(10):1741. doi: 10.3390/nano12101741.

Abstract

Owing to its simplicity and sensitivity, electrochemical analysis is of high significance in the detection of pollutants and highly toxic substances in the environment. In electrochemical analysis, the sensitivity of the sensor and reliability of the obtained signal are especially dependent on the electrode characteristics. Electrodes with a high density of nanomaterials, which exhibit excellent activity, are useful as sensor substrates for pollutant detection. However, the effective placement of high-density nanomaterials requires a high degree of control over the particle size, particle shape, and distance between the particles on the substrate. In this study, we exploited the properties of boron-doped diamond (BDD) electrodes, which have a wide potential window, and succeeded in coating a highly dense layer of gold nanoparticles (AuNPs) at high potential. The AuNP-modified BDD (AuNP-BDD) electrodes comprising less than 100 nm AuNPs at a density of 125 particles/µm were electrochemically synthesized over a short period of 30-60 s. The AuNP-BDD electrodes were applied for detecting arsenic, which is one of the most abundant elements, and exhibited a limit of detection of 0.473 ppb in solution.

摘要

由于其简单性和灵敏度,电化学分析在环境中污染物和剧毒物质的检测中具有重要意义。在电化学分析中,传感器的灵敏度和所获信号的可靠性尤其取决于电极特性。具有高密度纳米材料且表现出优异活性的电极,可用作污染物检测的传感器基底。然而,高密度纳米材料的有效放置需要对基底上颗粒的粒径、颗粒形状以及颗粒之间的距离进行高度控制。在本研究中,我们利用了具有宽电位窗口的硼掺杂金刚石(BDD)电极的特性,并成功在高电位下涂覆了一层高密度的金纳米颗粒(AuNP)。在30 - 60秒的短时间内,电化学合成了密度为125个颗粒/μm且包含小于100 nm金纳米颗粒的AuNP修饰BDD(AuNP - BDD)电极。AuNP - BDD电极用于检测砷,砷是含量最丰富的元素之一,在溶液中的检测限为0.473 ppb。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c365/9144727/8a1c5ddd7038/nanomaterials-12-01741-sch001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验