Facerias Marc, Puig Vicenç, Alcala Eugenio
Autonomous Systems, Department of Electrical and Electronic Engineering, University of Manchester, Sackville Street Building, Manchester M1 3BB, UK.
Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Llorens i Artigas 4-6, 08028 Barcelona, Spain.
Sensors (Basel). 2022 May 11;22(10):3672. doi: 10.3390/s22103672.
This article presents an approach to address the problem of localisation within the autonomous driving framework. In particular, this work takes advantage of the properties of polytopic Linear Parameter Varying (LPV) systems and set-based methodologies applied to Kalman filters to precisely locate both a set of landmarks and the vehicle itself. Using these techniques, we present an alternative approach to localisation algorithms that relies on the use of zonotopes to provide a guaranteed estimation of the states of the vehicle and its surroundings, which does not depend on any assumption of the noise nature other than its limits. LPV theory is used to model the dynamics of the vehicle and implement both an LPV-model predictive controller and a Zonotopic Kalman filter that allow localisation and navigation of the robot. The control and estimation scheme is validated in simulation using the Robotic Operating System (ROS) framework, where its effectiveness is demonstrated.
本文提出了一种在自动驾驶框架内解决定位问题的方法。具体而言,这项工作利用了多面体线性参数变化(LPV)系统的特性以及应用于卡尔曼滤波器的基于集合的方法,以精确地定位一组地标和车辆本身。使用这些技术,我们提出了一种与定位算法不同的方法,该方法依赖于使用zono多面体来提供对车辆及其周围环境状态的有保证的估计,除了噪声的限制外,不依赖于对噪声性质的任何假设。LPV理论用于对车辆的动力学进行建模,并实现一个LPV模型预测控制器和一个zono多面体卡尔曼滤波器,以实现机器人的定位和导航。该控制和估计方案在使用机器人操作系统(ROS)框架的仿真中得到了验证,其有效性得到了证明。