Suppr超能文献

经颅运动诱发电位的机器学习应用预测患者的阳性功能结局。

Machine Learning Application of Transcranial Motor-Evoked Potential to Predict Positive Functional Outcomes of Patients.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.

出版信息

Comput Intell Neurosci. 2022 May 20;2022:2801663. doi: 10.1155/2022/2801663. eCollection 2022.

Abstract

Intraoperative neuromonitoring (IONM) has been used to help monitor the integrity of the nervous system during spine surgery. Transcranial motor-evoked potential (TcMEP) has been used lately for lower lumbar surgery to prevent nerve root injuries and also to predict positive functional outcomes of patients. There were a number of studies that proved that the TcMEP signal's improvement is significant towards positive functional outcomes of patients. In this paper, we explored the possibilities of using a machine learning approach to TcMEP signal to predict positive functional outcomes of patients. With 55 patients who underwent various types of lumbar surgeries, the data were divided into 70 : 30 and 80 : 20 ratios for training and testing of the machine learning models. The highest sensitivity and specificity were achieved by Fine KNN of 80 : 20 ratio with 87.5% and 33.33%, respectively. In the meantime, we also tested the existing improvement criteria presented in the literature, and 50% of TcMEP improvement criteria achieved 83.33% sensitivity and 75% specificity. But the rigidness of this threshold method proved unreliable in this study when different datasets were used as the sensitivity and specificity dropped. The proposed method by using machine learning has more room to advance with a larger dataset and various signals' features to choose from.

摘要

术中神经监测(IONM)已被用于帮助监测脊柱手术过程中神经系统的完整性。经颅运动诱发电位(TcMEP)最近已被用于下腰椎手术,以防止神经根损伤,并预测患者的积极功能结果。有许多研究证明 TcMEP 信号的改善与患者的积极功能结果有显著关系。在本文中,我们探讨了使用机器学习方法对 TcMEP 信号进行分析,以预测患者的积极功能结果的可能性。对 55 名接受各种类型腰椎手术的患者进行了研究,数据分为 70:30 和 80:20 的比例进行机器学习模型的训练和测试。在 80:20 的比例下,Fine KNN 达到了最高的灵敏度和特异性,分别为 87.5%和 33.33%。同时,我们还测试了文献中提出的现有改善标准,其中 50%的 TcMEP 改善标准的灵敏度为 83.33%,特异性为 75%。但是,当使用不同的数据集时,这种阈值方法的刚性被证明是不可靠的,因为灵敏度和特异性都有所下降。通过使用机器学习方法,有更多的空间可以利用更大的数据集和各种信号特征来进行改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efa0/9142308/fec2073cf73e/CIN2022-2801663.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验