Suppr超能文献

用于智慧城市管理的人工智能辅助空气质量监测。

Artificial intelligence-assisted air quality monitoring for smart city management.

作者信息

Neo En Xin, Hasikin Khairunnisa, Lai Khin Wee, Mokhtar Mohd Istajib, Azizan Muhammad Mokhzaini, Hizaddin Hanee Farzana, Razak Sarah Abdul

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.

Center of Intelligent Systems for Emerging Technology (CISET), Faculty of Engineering, Kuala Lumpur, Malaysia.

出版信息

PeerJ Comput Sci. 2023 May 24;9:e1306. doi: 10.7717/peerj-cs.1306. eCollection 2023.

Abstract

BACKGROUND

The environment has been significantly impacted by rapid urbanization, leading to a need for changes in climate change and pollution indicators. The 4IR offers a potential solution to efficiently manage these impacts. Smart city ecosystems can provide well-designed, sustainable, and safe cities that enable holistic climate change and global warming solutions through various community-centred initiatives. These include smart planning techniques, smart environment monitoring, and smart governance. An air quality intelligence platform, which operates as a complete measurement site for monitoring and governing air quality, has shown promising results in providing actionable insights. This article aims to highlight the potential of machine learning models in predicting air quality, providing data-driven strategic and sustainable solutions for smart cities.

METHODS

This study proposed an end-to-end air quality predictive model for smart city applications, utilizing four machine learning techniques and two deep learning techniques. These include Ada Boost, SVR, RF, KNN, MLP regressor and LSTM. The study was conducted in four different urban cities in Selangor, Malaysia, including Petaling Jaya, Banting, Klang, and Shah Alam. The model considered the air quality data of various pollution markers such as PM, PM, O, and CO. Additionally, meteorological data including wind speed and wind direction were also considered, and their interactions with the pollutant markers were quantified. The study aimed to determine the correlation variance of the dependent variable in predicting air pollution and proposed a feature optimization process to reduce dimensionality and remove irrelevant features to enhance the prediction of PM, improving the existing LSTM model. The study estimates the concentration of pollutants in the air based on training and highlights the contribution of feature optimization in air quality predictions through feature dimension reductions.

RESULTS

In this section, the results of predicting the concentration of pollutants (PM, PM, O, and CO) in the air are presented in R and RMSE. In predicting the PM and PMconcentration, LSTM performed the best overall high Rvalues in the four study areas with the R values of 0.998, 0.995, 0.918, and 0.993 in Banting, Petaling, Klang and Shah Alam stations, respectively. The study indicated that among the studied pollution markers, PMPM, NO, wind speed and humidity are the most important elements to monitor. By reducing the number of features used in the model the proposed feature optimization process can make the model more interpretable and provide insights into the most critical factor affecting air quality. Findings from this study can aid policymakers in understanding the underlying causes of air pollution and develop more effective smart strategies for reducing pollution levels.

摘要

背景

快速城市化对环境产生了重大影响,导致气候变化和污染指标需要改变。第四次工业革命提供了一个有效管理这些影响的潜在解决方案。智慧城市生态系统可以提供设计良好、可持续且安全的城市,通过各种以社区为中心的举措实现全面的气候变化和全球变暖解决方案。这些举措包括智能规划技术、智能环境监测和智能治理。一个作为监测和管理空气质量的完整测量站点运行的空气质量智能平台,在提供可操作的见解方面已显示出有前景的结果。本文旨在突出机器学习模型在预测空气质量方面的潜力,为智慧城市提供数据驱动的战略和可持续解决方案。

方法

本研究为智慧城市应用提出了一个端到端的空气质量预测模型,利用了四种机器学习技术和两种深度学习技术。这些技术包括自适应增强(Ada Boost)、支持向量回归(SVR)、随机森林(RF)、K近邻(KNN)、多层感知器回归器(MLP regressor)和长短期记忆网络(LSTM)。该研究在马来西亚雪兰莪州的四个不同城市进行,包括八打灵再也、万津、巴生和莎阿南。该模型考虑了各种污染指标的空气质量数据,如颗粒物(PM)、臭氧(O)和一氧化碳(CO)。此外还考虑了包括风速和风向在内的气象数据,并对它们与污染物指标的相互作用进行了量化。该研究旨在确定预测空气污染时因变量的相关方差,并提出一个特征优化过程以降低维度并去除无关特征,以增强对颗粒物的预测,改进现有的长短期记忆网络模型。该研究基于训练估计空气中污染物的浓度,并通过特征维度缩减突出特征优化在空气质量预测中的贡献。

结果

在本节中,以决定系数(R)和均方根误差(RMSE)呈现预测空气中污染物(PM、PM、O和CO)浓度的结果。在预测PM和PM浓度时,长短期记忆网络在四个研究区域总体表现最佳,R值较高,在万津、八打灵再也、巴生和莎阿南站的R值分别为0.998、0.995、0.918和0.993。该研究表明,在所研究的污染指标中,PM、PM、氮氧化物(NO)、风速和湿度是最重要的监测要素。通过减少模型中使用的特征数量,所提出的特征优化过程可以使模型更具可解释性,并深入了解影响空气质量的最关键因素。本研究的结果可以帮助政策制定者了解空气污染的根本原因,并制定更有效的智能策略来降低污染水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62eb/10280551/307b3a1c40d9/peerj-cs-09-1306-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验