Suppr超能文献

相似文献

1
Structurally-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising.
IEEE Access. 2018;6:41839-41855. doi: 10.1109/ACCESS.2018.2858196. Epub 2018 Jul 20.
2
Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
Comput Math Methods Med. 2019 Dec 7;2019:8639825. doi: 10.1155/2019/8639825. eCollection 2019.
3
Learning low-dose CT degradation from unpaired data with flow-based model.
Med Phys. 2022 Dec;49(12):7516-7530. doi: 10.1002/mp.15886. Epub 2022 Aug 8.
4
Probabilistic self-learning framework for low-dose CT denoising.
Med Phys. 2021 May;48(5):2258-2270. doi: 10.1002/mp.14796. Epub 2021 Mar 17.
5
Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
Comput Biol Med. 2021 Aug;135:104625. doi: 10.1016/j.compbiomed.2021.104625. Epub 2021 Jul 3.
7
Weakly supervised low-dose computed tomography denoising based on generative adversarial networks.
Quant Imaging Med Surg. 2024 Aug 1;14(8):5571-5590. doi: 10.21037/qims-24-68. Epub 2024 Jul 26.
8
Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching.
Med Phys. 2024 Jun;51(6):4181-4200. doi: 10.1002/mp.17015. Epub 2024 Mar 13.
9
Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
Med Phys. 2019 Apr;46(4):1686-1696. doi: 10.1002/mp.13415. Epub 2019 Feb 14.
10
Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
Med Phys. 2023 Jan;50(1):74-88. doi: 10.1002/mp.15952. Epub 2022 Sep 2.

引用本文的文献

1
Super-Resolution MR Spectroscopic Imaging via Diffusion Models for Tumor Metabolism Mapping.
J Imaging Inform Med. 2025 Sep 2. doi: 10.1007/s10278-025-01652-x.
2
Wavelet-domain frequency-mixing transformer unfolding network for low-dose computed tomography image denoising.
Quant Imaging Med Surg. 2025 Aug 1;15(8):7419-7440. doi: 10.21037/qims-2024-2368. Epub 2025 Jul 30.
4
Self-supervised learning for CT image denoising and reconstruction: a review.
Biomed Eng Lett. 2024 Sep 12;14(6):1207-1220. doi: 10.1007/s13534-024-00424-w. eCollection 2024 Nov.
5
Deep-learning-based attenuation map generation in kidney single photon emission computed tomography.
EJNMMI Phys. 2024 Oct 12;11(1):84. doi: 10.1186/s40658-024-00686-4.
6
Dual stage MRI image restoration based on blind spot denoising and hybrid attention.
BMC Med Imaging. 2024 Sep 28;24(1):259. doi: 10.1186/s12880-024-01437-8.
7
Weakly supervised low-dose computed tomography denoising based on generative adversarial networks.
Quant Imaging Med Surg. 2024 Aug 1;14(8):5571-5590. doi: 10.21037/qims-24-68. Epub 2024 Jul 26.
8
Development and validation of a noise insertion algorithm for photon-counting-detector CT.
Med Phys. 2024 Sep;51(9):5943-5953. doi: 10.1002/mp.17263. Epub 2024 Jun 23.
9
Assessing the Capacity of a Denoising Diffusion Probabilistic Model to Reproduce Spatial Context.
IEEE Trans Med Imaging. 2024 Oct;43(10):3608-3620. doi: 10.1109/TMI.2024.3414931. Epub 2024 Oct 28.

本文引用的文献

1
Region-adaptive Deformable Registration of CT/MRI Pelvic Images via Learning-based Image Synthesis.
IEEE Trans Image Process. 2018 Mar 30. doi: 10.1109/TIP.2018.2820424.
2
3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1522-1534. doi: 10.1109/TMI.2018.2832217.
3
Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1348-1357. doi: 10.1109/TMI.2018.2827462.
5
Discriminative Feature Representation to Improve Projection Data Inconsistency for Low Dose CT Imaging.
IEEE Trans Med Imaging. 2017 Dec;36(12):2499-2509. doi: 10.1109/TMI.2017.2739841. Epub 2017 Aug 14.
6
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
7
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.
8
Machine learning will transform radiology significantly within the next 5 years.
Med Phys. 2017 Jun;44(6):2041-2044. doi: 10.1002/mp.12204. Epub 2017 Apr 20.
9
Low-dose CT via convolutional neural network.
Biomed Opt Express. 2017 Jan 9;8(2):679-694. doi: 10.1364/BOE.8.000679. eCollection 2017 Feb 1.
10
Comparison Between Pre-Log and Post-Log Statistical Models in Ultra-Low-Dose CT Reconstruction.
IEEE Trans Med Imaging. 2017 Mar;36(3):707-720. doi: 10.1109/TMI.2016.2627004. Epub 2016 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验