Suppr超能文献

理解青少年女性创伤后应激轨迹:一种基于优势的机器学习方法,研究包括在线行为在内的风险和保护因素。

Understanding posttraumatic stress trajectories in adolescent females: A strength-based machine learning approach examining risk and protective factors including online behaviors.

机构信息

Department of Counseling and Clinical Psychology, Columbia University Teachers College, New York, NY, USA.

College of Health and Human Development, Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA.

出版信息

Dev Psychopathol. 2023 Oct;35(4):1794-1807. doi: 10.1017/S0954579422000475. Epub 2022 May 30.

Abstract

Heterogeneity in the course of posttraumatic stress symptoms (PTSS) following a major life trauma such as childhood sexual abuse (CSA) can be attributed to numerous contextual factors, psychosocial risk, and family/peer support. The present study investigates a comprehensive set of baseline psychosocial risk and protective factors including online behaviors predicting empirically derived PTSS trajectories over time. Females aged 12-16 years ( = 440); 156 with substantiated CSA; 284 matched comparisons with various self-reported potentially traumatic events (PTEs) were assessed at baseline and then annually for 2 subsequent years. Latent growth mixture modeling (LGMM) was used to derive PTSS trajectories, and least absolute shrinkage and selection operator (LASSO) logistic regression was used to investigate psychosocial predictors including online behaviors of trajectories. LGMM revealed four PTSS trajectories: resilient (52.1%), emerging (9.3%), recovering (19.3%), and chronic (19.4%). Of the 23 predictors considered, nine were retained in the LASSO model discriminating resilient versus chronic trajectories including the absence of CSA and other PTEs, low incidences of exposure to sexual content online, minority ethnicity status, and the presence of additional psychosocial protective factors. Results provide insights into possible intervention targets to promote resilience in adolescence following PTEs.

摘要

重大生活创伤(如儿童性虐待)后创伤后应激症状(PTSS)的过程存在异质性,可归因于众多情境因素、心理社会风险和家庭/同伴支持。本研究调查了一套全面的基线心理社会风险和保护因素,包括在线行为,这些行为可预测随时间推移得出的实证性 PTSS 轨迹。评估了年龄在 12-16 岁的女性(n=440);156 名有证实的 CSA;284 名与各种自我报告的潜在创伤性事件(PTE)相匹配的对照组,在基线时进行评估,然后在随后的 2 年内每年评估一次。潜在增长混合模型(LGMM)用于得出 PTSS 轨迹,最小绝对收缩和选择算子(LASSO)逻辑回归用于研究心理社会预测因素,包括轨迹的在线行为。LGMM 揭示了四种 PTSS 轨迹:有弹性(52.1%)、新兴(9.3%)、恢复(19.3%)和慢性(19.4%)。在考虑的 23 个预测因素中,有 9 个被保留在 LASSO 模型中,用于区分有弹性和慢性轨迹,包括没有 CSA 和其他 PTE、在线接触性内容的发生率低、少数民族地位以及存在其他心理社会保护因素。研究结果提供了一些可能的干预目标的见解,以促进 PTE 后青少年的适应力。

相似文献

本文引用的文献

2
Childhood Sexual Abuse and Exposure to Peer Bullying Victimization.儿童期性虐待和遭受同伴欺凌受害情况。
J Interpers Violence. 2022 Oct;37(19-20):NP18589-NP18613. doi: 10.1177/08862605211037420. Epub 2021 Sep 1.
3
The resilience paradox.复原力悖论
Eur J Psychotraumatol. 2021 Jun 30;12(1):1942642. doi: 10.1080/20008198.2021.1942642. eCollection 2021.
5
A Monte Carlo evaluation of growth mixture modeling.基于蒙特卡罗模拟的增长混合模型评估。
Dev Psychopathol. 2022 Oct;34(4):1604-1617. doi: 10.1017/S0954579420002230. Epub 2021 Mar 15.
6
Resilience in Development and Psychopathology: Multisystem Perspectives.发展与精神病理学中的复原力:多系统视角
Annu Rev Clin Psychol. 2021 May 7;17:521-549. doi: 10.1146/annurev-clinpsy-081219-120307. Epub 2021 Feb 3.
8
Hidden talents in harsh environments.恶劣环境下的隐藏才能。
Dev Psychopathol. 2022 Feb;34(1):95-113. doi: 10.1017/S0954579420000887. Epub 2020 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验