Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK.
UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK.
Acta Neuropathol. 2022 Aug;144(2):283-303. doi: 10.1007/s00401-022-02441-4. Epub 2022 May 30.
Cerebral small vessel disease (SVD) is the leading cause of vascular dementia, causes a quarter of strokes, and worsens stroke outcomes. The disease is characterised by patchy cerebral small vessel and white matter pathology, but the underlying mechanisms are poorly understood. This microvascular and tissue damage has been classically considered secondary to extrinsic factors, such as hypertension, but this fails to explain the patchy nature of the disease, the link to endothelial cell (EC) dysfunction even when hypertension is absent, and the increasing evidence of high heritability to SVD-related brain damage. We have previously shown the link between deletion of the phospholipase flippase Atp11b and EC dysfunction in an inbred hypertensive rat model with SVD-like pathology and a single nucleotide polymorphism (SNP) in ATP11B associated with human sporadic SVD. Here, we generated a novel normotensive transgenic rat model, where Atp11b is deleted, and show pathological, imaging and behavioural changes typical of those in human SVD, but that occur without hypertension. Atp11bKO rat brain and retinal small vessels show ECs with molecular and morphological changes of dysfunction, with myelin disruption in a patchy pattern around some but not all brain small vessels, similar to the human brain. We show that ATP11B/ATP11B is heterogeneously expressed in ECs in normal rat and human brain even in the same transverse section of the same blood vessel, suggesting variable effects of the loss of ATP11B on each vessel and an explanation for the patchy nature of the disease. This work highlights a link between inherent EC dysfunction and vulnerability to SVD white matter damage with a marked heterogeneity of ECs in vivo which modulates this response, occurring even in the absence of hypertension. These findings refocus our strategies for therapeutics away from antihypertensive (and vascular risk factor) control alone and towards ECs in the effort to provide alternative targets to prevent a major cause of stroke and dementia.
脑小血管病(SVD)是血管性痴呆的主要原因,占中风的四分之一,并使中风的预后恶化。该疾病的特征是脑小血管和白质病理的斑块状,但潜在机制尚不清楚。这种微血管和组织损伤传统上被认为是外在因素(如高血压)引起的,但这并不能解释疾病的斑块状性质、即使在没有高血压的情况下与内皮细胞(EC)功能障碍的联系,以及与 SVD 相关脑损伤的高遗传性的不断增加的证据。我们之前已经证明了在具有 SVD 样病理的同种系高血压大鼠模型中,磷脂酶 flippase Atp11b 的缺失与 EC 功能障碍之间的联系,以及与人类散发 SVD 相关的 ATP11B 中的单核苷酸多态性(SNP)之间的联系。在这里,我们生成了一种新的正常血压转基因大鼠模型,其中 Atp11b 缺失,并显示出与人类 SVD 相似的病理、成像和行为变化,但没有高血压。Atp11bKO 大鼠脑和视网膜小血管中的 EC 表现出分子和形态功能障碍的变化,髓鞘在一些但不是所有脑小血管周围呈斑块状破坏,类似于人脑。我们表明,ATP11B/ATP11B 在正常大鼠和人类大脑中的 EC 中呈异质性表达,即使在同一血管的同一横截面上也是如此,这表明 ATP11B 的缺失对每个血管的影响不同,也解释了疾病的斑块状性质。这项工作强调了固有 EC 功能障碍与 SVD 白质损伤易感性之间的联系,以及体内 EC 的明显异质性,这种异质性调节了这种反应,即使在没有高血压的情况下也是如此。这些发现使我们重新将治疗策略的重点从单纯的降压(和血管风险因素)控制转移到 EC 上,以寻找预防中风和痴呆的主要原因的替代靶点。